Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth

Authors
Jang, Yeoun-WooLee, SeungminYeom, Kyung MunJeong, KiwanChoi, KwangChoi, MansooNoh, Jun Hong
Issue Date
1월-2021
Publisher
NATURE RESEARCH
Citation
NATURE ENERGY, v.6, no.1, pp.63 - +
Indexed
SCIE
SCOPUS
Journal Title
NATURE ENERGY
Volume
6
Number
1
Start Page
63
End Page
+
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/129485
DOI
10.1038/s41560-020-00749-7
ISSN
2058-7546
Abstract
Two-dimensional structures introduced into perovskite solar cells improve performance yet their morphological and dimensional control remains challenging. Jang et al. devise a solid-phase approach to grow phase-pure two-dimensional perovskites over bulk perovskite, which affords greater device efficiency and stability. The solution process has been employed to obtain Ruddlesden-Popper two-dimensional/three-dimensional (2D/3D) halide perovskite bilayers in perovskite solar cells for improving the efficiency and chemical stability; however, the solution process has limitations in achieving thermal stability and designing a proper local electric field for efficient carrier collection due to the formation of a metastable quasi-2D perovskite. Here we grow a stable and highly crystalline 2D (C4H9NH3)(2)PbI4 film on top of a 3D film using a solvent-free solid-phase in-plane growth, which could result in an intact 2D/3D heterojunction. An enhanced built-in potential is achieved at the 2D/3D heterojunction with a thick 2D film, resulting in high photovoltage in the device. The intact 2D/3D heterojunction endow the devices with an open-circuit voltage of 1.185 V and a certified steady-state efficiency of 24.35%. The encapsulated device retained 94% of its initial efficiency after 1,056 h under the damp heat test (85 degrees C/85% relative humidity) and 98% after 1,620 h under full-sun illumination.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE