Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Simple Yet Effective Way for Improving the Performance of GAN

Full metadata record
DC Field Value Language
dc.contributor.authorYeo, Y.-
dc.contributor.authorShin, Y.-
dc.contributor.authorPark, S.-
dc.contributor.authorKo, S.-
dc.date.accessioned2021-12-05T04:42:19Z-
dc.date.available2021-12-05T04:42:19Z-
dc.date.created2021-08-31-
dc.date.issued2022-04-
dc.identifier.issn2162-237X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/129528-
dc.description.abstractIn adversarial learning, the discriminator often fails to guide the generator successfully since it distinguishes between real and generated images using silly or nonrobust features. To alleviate this problem, this brief presents a simple but effective way that improves the performance of the generative adversarial network (GAN) without imposing the training overhead or modifying the network architectures of existing methods. The proposed method employs a novel cascading rejection (CR) module for discriminator, which extracts multiple nonoverlapped features in an iterative manner using the vector rejection operation. Since the extracted diverse features prevent the discriminator from concentrating on nonmeaningful features, the discriminator can guide the generator effectively to produce images that are more similar to the real images. In addition, since the proposed CR module requires only a few simple vector operations, it can be readily applied to existing frameworks with marginal training overheads. Quantitative evaluations on various data sets, including CIFAR-10, CelebA, CelebA-HQ, LSUN, and tiny-ImageNet, confirm that the proposed method significantly improves the performance of GAN and conditional GAN in terms of the Frechet inception distance (FID), indicating the diversity and visual appearance of the generated images. IEEE-
dc.languageEnglish-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subjectIterative methods-
dc.subjectNetwork architecture-
dc.subjectAdversarial learning-
dc.subjectAdversarial networks-
dc.subjectDiverse features-
dc.subjectQuantitative evaluation-
dc.subjectReal images-
dc.subjectTraining overhead-
dc.subjectVector operations-
dc.subjectVisual appearance-
dc.subjectImage enhancement-
dc.titleSimple Yet Effective Way for Improving the Performance of GAN-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, S.-
dc.identifier.doi10.1109/TNNLS.2020.3045000-
dc.identifier.scopusid2-s2.0-85099105517-
dc.identifier.wosid000778930100039-
dc.identifier.bibliographicCitationIEEE Transactions on Neural Networks and Learning Systems, v.33, no.4, pp.1811 - 1818-
dc.relation.isPartOfIEEE Transactions on Neural Networks and Learning Systems-
dc.citation.titleIEEE Transactions on Neural Networks and Learning Systems-
dc.citation.volume33-
dc.citation.number4-
dc.citation.startPage1811-
dc.citation.endPage1818-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusIterative methods-
dc.subject.keywordPlusNetwork architecture-
dc.subject.keywordPlusAdversarial learning-
dc.subject.keywordPlusAdversarial networks-
dc.subject.keywordPlusDiverse features-
dc.subject.keywordPlusQuantitative evaluation-
dc.subject.keywordPlusReal images-
dc.subject.keywordPlusTraining overhead-
dc.subject.keywordPlusVector operations-
dc.subject.keywordPlusVisual appearance-
dc.subject.keywordPlusImage enhancement-
dc.subject.keywordAuthorAdversarial learning-
dc.subject.keywordAuthorgenerative adversarial network (GAN)-
dc.subject.keywordAuthortraining strategy.-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE