Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jinwoo-
dc.contributor.authorKim, Byungwoo-
dc.contributor.authorYoo, Young-Eun-
dc.contributor.authorChung, Haegeun-
dc.contributor.authorKim, Woong-
dc.date.accessioned2021-12-26T13:40:57Z-
dc.date.available2021-12-26T13:40:57Z-
dc.date.created2021-08-30-
dc.date.issued2014-11-26-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/133219-
dc.description.abstractWe demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V -> 2.1 V) and cell capacitance (8.3 F/g -> 61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectELECTROCHEMICAL-BEHAVIOR-
dc.subjectFUEL-CELLS-
dc.titleEnergy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Woong-
dc.identifier.doi10.1021/am506258s-
dc.identifier.scopusid2-s2.0-84914689369-
dc.identifier.wosid000345721400007-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.6, no.22, pp.19499 - 19503-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume6-
dc.citation.number22-
dc.citation.startPage19499-
dc.citation.endPage19503-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusELECTROCHEMICAL-BEHAVIOR-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordAuthorsupercapacitor-
dc.subject.keywordAuthorenergy storage-
dc.subject.keywordAuthorredox molecule-
dc.subject.keywordAuthororganic electrolyte-
dc.subject.keywordAuthorcarbon nanotube-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Woong photo

Kim, Woong
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE