Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-Assembly of Pulverized Nanoparticles: An Approach to Realize Large-Capacity, Long-Lasting, and Ultra-Fast-Chargeable Na-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jun-Hyoung-
dc.contributor.authorChoi, Yong-Seok-
dc.contributor.authorKim, ChangHyeon-
dc.contributor.authorByeon, Young-Woon-
dc.contributor.authorKim, Yongmin-
dc.contributor.authorLee, Byeong-Joo-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorAhn, Hyojun-
dc.contributor.authorLee, Jae-Chul-
dc.date.accessioned2022-02-14T13:40:40Z-
dc.date.available2022-02-14T13:40:40Z-
dc.date.created2022-02-08-
dc.date.issued2021-11-10-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/135746-
dc.description.abstractThe fabrication of battery anodes simultaneously exhibiting large capacity, fast charging capability, and high cyclic stability is challenging because these properties are mutually contrasting in nature. Here, we report a rational strategy to design anodes outperforming the current anodes by simultaneous provision of the above characteristics without utilizing nanomaterials and surface modifications. This is achieved by promoting spontaneous structural evolution of coarse Sn particles to 3D-networked nanostructures during battery cycling in an appropriate electrolyte. The anode steadily exhibits large capacity (similar to 480 mAhg(-1)) and energy retention capability (99.9%) during >1500 cycles even at an ultrafast charging rate of 12 690 mAg(-1) (15C). The structural and chemical origins of the measured properties are explained using multiscale simulations combining molecular dynamics and density functional theory calculations. The developed method is simple, scalable, and expandable to other systems and provides an alternative robust route to obtain nanostructured anode materials in large quantities.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectLITHIUM-ION-
dc.subjectTIN NANOPARTICLES-
dc.subjectSN ANODE-
dc.subjectGROWTH-
dc.subjectCARBON-
dc.subjectOXIDE-
dc.subjectELECTROLYTE-
dc.subjectNANOFIBERS-
dc.subjectLITHIATION-
dc.titleSelf-Assembly of Pulverized Nanoparticles: An Approach to Realize Large-Capacity, Long-Lasting, and Ultra-Fast-Chargeable Na-Ion Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jae-Chul-
dc.identifier.doi10.1021/acs.nanolett.1c02518-
dc.identifier.scopusid2-s2.0-85118864219-
dc.identifier.wosid000718298700014-
dc.identifier.bibliographicCitationNANO LETTERS, v.21, no.21, pp.9044 - 9051-
dc.relation.isPartOfNANO LETTERS-
dc.citation.titleNANO LETTERS-
dc.citation.volume21-
dc.citation.number21-
dc.citation.startPage9044-
dc.citation.endPage9051-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusSN ANODE-
dc.subject.keywordPlusTIN NANOPARTICLES-
dc.subject.keywordAuthordislocation pipe diffusion-
dc.subject.keywordAuthorpulverization-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthorstress-induced dislocation-
dc.subject.keywordAuthorultrafast charging-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae chul photo

Lee, Jae chul
공과대학 (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE