Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanically Interlocked Polymer Electrolyte with Built-In Fast Molecular Shuttles for All-Solid-State Lithium Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Jiae-
dc.contributor.authorLee, Gwang-Hee-
dc.contributor.authorHur, Joon-
dc.contributor.authorSung, Myeong-Chang-
dc.contributor.authorSeo, Ji-Hun-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2022-02-15T21:41:58Z-
dc.date.available2022-02-15T21:41:58Z-
dc.date.created2022-02-08-
dc.date.issued2021-11-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/135906-
dc.description.abstractThe mobility of molecular shuttles inside a mechanically interlocked polymer (MIP) can improve the ionic conductivity and electron transport capacity of a solid polymer electrolyte (SPE) and maintain a mechanically tough structure. The polyrotaxane-based MIP electrolyte with a necklace-like molecular structure exhibits high ionic conductivity (sigma = 5.93 x 10(-3) S cm(-1) at 25 degrees C and 1.44 x 10(-2) S cm(-1) at 60 degrees C), a high Li+ ion transference number (t(+) = 0.71), and high electrochemical oxidation stability (approximate to 4.7 V vs Li+/Li). When SPEs are used in Li-based batteries, a high Coulombic efficiency (>= 98.5%), an excellent rate capability, and fast charging (>= 2C) can be achieved using a "built-in molecular shuttle" design.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectIONIC-CONDUCTIVITY-
dc.subjectTRANSPORT-
dc.titleMechanically Interlocked Polymer Electrolyte with Built-In Fast Molecular Shuttles for All-Solid-State Lithium Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeo, Ji-Hun-
dc.contributor.affiliatedAuthorKim, Dong-Wan-
dc.identifier.doi10.1002/aenm.202102583-
dc.identifier.scopusid2-s2.0-85116839860-
dc.identifier.wosid000705101900001-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.11, no.44-
dc.relation.isPartOfADVANCED ENERGY MATERIALS-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume11-
dc.citation.number44-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusIONIC-CONDUCTIVITY-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorASSLBs-
dc.subject.keywordAuthormechanically interlocked polymers-
dc.subject.keywordAuthormolecular shuttles-
dc.subject.keywordAuthorpolyrotaxane-
dc.subject.keywordAuthorsolid polymer electrolytes-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE