Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Inorganic Hollow Nanocoils Fabricated by Controlled Interfacial Reaction and Their Electrocatalytic Properties

Authors
Moon, Jun HwanLee, Moo YoungPark, Bum ChulJeon, Yoo SangKim, SeunghyunKim, TaesoonKo, Min JunCho, Kang HeeNam, Ki TaeKim, Young Keun
Issue Date
11월-2021
Publisher
WILEY-V C H VERLAG GMBH
Keywords
Kirkendall effect; galvanic replacement reaction; hollow nanocoils; oxygen evolution reaction; transition metals
Citation
SMALL, v.17, no.44
Indexed
SCIE
SCOPUS
Journal Title
SMALL
Volume
17
Number
44
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/135912
DOI
10.1002/smll.202103575
ISSN
1613-6810
Abstract
The fabrication of 3D hollow nanostructures not only allows the tactical provision of specific physicochemical properties but also broadens the application scope of such materials in various fields. The synthesis of 3D hollow nanocoils (HNCs), however, is limited by the lack of an appropriate template or synthesis method, thereby restricting the wide-scale application of HNCs. Herein, a strategy for preparing HNCs by harnessing a single sacrificial template to modulate the interfacial reaction at a solid-liquid interface that allows the shape-regulated transition is studied. Furthermore, the triggering of the Kirkendall effect in 3D HNCs is demonstrated. Depending on the final state of the transition metal ions reduced during the electrochemical preparation of HNCs, the surface states of the binding anions and the composition of the HNCs can be tuned. In a single-component CrPO4 HNC with a clean surface, the Kirkendall effect of the coil shape is analyzed at various points throughout the reaction. The rough-surface multicomponent MnOxP0.21 HNCs are complexed with ligand-modified BF4-Mn3O4 nanoparticles. The fabricated nanocomposite exhibits an overpotential decrease of 25 mV at neutral pH compared to pure BF4-Mn3O4 nanoparticles because of the increased active surface area.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Keun photo

Kim, Young Keun
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE