Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jin-Sung-
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2022-02-16T14:42:06Z-
dc.date.available2022-02-16T14:42:06Z-
dc.date.created2022-02-08-
dc.date.issued2021-10-30-
dc.identifier.issn1005-0302-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/135992-
dc.description.abstractEfforts have been made to develop a promising anode material with a novel composition for sodium ion batteries (SIBs). In this study, the sodium-ion storage mechanism of transition metal selenite that comprises transition metal cation coupled with two anions is studied. Amorphous cobalt selenite (CoSeO3)-carbon composite nanofibers containing numerous pores are synthesized via electrospinning process. Upon heat treatment of the electrospun nanofibers containing selenium, CoSe2 nanoclusters are formed. During the subsequent oxidation, CoSe2 transformed into amorphous CoSeO3 and some part of carbon was oxidized into CO2, leaving the pores inside the nanofiber. To unveil the electrochemical reaction mechanism, analytical methods including cyclic voltammetry, ex-situ X-ray photoelectron spectroscopy, ex-situ transmission electron microscopy, and in-situ electrochemical impedance spectroscopy techniques were adopted. Based on the analyses, the following conversion reaction from the second cycle onward is suggested: CoO + xSeO(2) + (1 x)Se + 4(x + 1)Na+ + 4(x + 1)e(-) <-> Co + (2x + 1)Na2O + Na2Se. Furthermore, the electrochemical properties of porous CoSeO3-carbon composite nanofibers are analyzed in detail. The anode material exhibited stable cycle stability up to 200 cycles at 0.5 A g(-1) and high rate performance up to 5 A g(-1). (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherJOURNAL MATER SCI TECHNOL-
dc.subjectELECTRODE MATERIALS-
dc.subjectGRAPHENE OXIDE-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectHIGH-CAPACITY-
dc.subjectK-ION-
dc.subjectLITHIUM-
dc.subjectSTORAGE-
dc.subjectENERGY-
dc.subjectNANOSPHERES-
dc.subjectNANOSTRUCTURES-
dc.titleExploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.jmst.2021.01.076-
dc.identifier.scopusid2-s2.0-85104959379-
dc.identifier.wosid000696986000003-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, v.89, pp.24 - 35-
dc.relation.isPartOfJOURNAL OF MATERIALS SCIENCE & TECHNOLOGY-
dc.citation.titleJOURNAL OF MATERIALS SCIENCE & TECHNOLOGY-
dc.citation.volume89-
dc.citation.startPage24-
dc.citation.endPage35-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusK-ION-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorAnode materials-
dc.subject.keywordAuthorConversion reaction-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorMetal selenite-
dc.subject.keywordAuthorSodium-ion batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE