Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimization of semi-interlocking heat sinks for hotspot thermal management using multi-objective genetic algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorShin, H.H.-
dc.contributor.authorYun, S.-
dc.contributor.authorPark, M.H.-
dc.contributor.authorJang, D.S.-
dc.contributor.authorKim, Y.-
dc.date.accessioned2022-02-23T17:40:20Z-
dc.date.available2022-02-23T17:40:20Z-
dc.date.created2022-02-11-
dc.date.issued2022-02-
dc.identifier.issn0017-9310-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/136644-
dc.description.abstractA semi-interlocking heat sink that operates based on the effect of flow acceleration in a curved channel is proposed to mitigate local heat fluxes from power electronics. The proposed heat sink offers easy manufacturability owing to its simple structure. A computational fluid dynamics simulation is developed and validated experimentally. The simulation is conducted based on periodic boundary conditions. The design of experiment method and the Kriging meta-modeling are used to optimize the heat sink. Furthermore, a multi-objective genetic algorithm is used to minimize thermal resistance and pressure drop. Based on the optimization results, the thermal and hydraulic characteristics are analyzed according to geometric changes. The analysis shows that the proposed heat sink affords a 30.4%–34.7% lower thermal resistance than plate-finned heat sinks at the same pumping power. © 2021 Elsevier Ltd-
dc.languageEnglish-
dc.language.isoen-
dc.publisherElsevier Ltd-
dc.titleOptimization of semi-interlocking heat sinks for hotspot thermal management using multi-objective genetic algorithm-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Y.-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2021.122170-
dc.identifier.scopusid2-s2.0-85119042198-
dc.identifier.wosid000813987300005-
dc.identifier.bibliographicCitationInternational Journal of Heat and Mass Transfer, v.183-
dc.relation.isPartOfInternational Journal of Heat and Mass Transfer-
dc.citation.titleInternational Journal of Heat and Mass Transfer-
dc.citation.volume183-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusFLOW CHARACTERISTICS-
dc.subject.keywordPlusTRANSFER ENHANCEMENT-
dc.subject.keywordPlusWAVY CHANNEL-
dc.subject.keywordPlusMICROCHANNEL-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusRIBS-
dc.subject.keywordPlusNANOFLUID-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorComputational fluid dynamics-
dc.subject.keywordAuthorElectronics cooling-
dc.subject.keywordAuthorForced convection-
dc.subject.keywordAuthorLiquid-cooled heat sink-
dc.subject.keywordAuthorThermal management-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE