Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

Full metadata record
DC Field Value Language
dc.contributor.authorKeith, John A.-
dc.contributor.authorVassilev-Galindo, Valentin-
dc.contributor.authorCheng, Bingqing-
dc.contributor.authorChmiela, Stefan-
dc.contributor.authorGastegger, Michael-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorTkatchenko, Alexandre-
dc.date.accessioned2022-02-25T02:40:41Z-
dc.date.available2022-02-25T02:40:41Z-
dc.date.created2022-02-07-
dc.date.issued2021-08-25-
dc.identifier.issn0009-2665-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/136810-
dc.description.abstractMachine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectDENSITY-FUNCTIONAL-THEORY-
dc.subjectPOTENTIAL-ENERGY SURFACES-
dc.subjectMOLECULAR-DYNAMICS SIMULATIONS-
dc.subjectEFFECTIVE CORE POTENTIALS-
dc.subjectDEEP NEURAL-NETWORKS-
dc.subjectCOUPLED-CLUSTER THEORY-
dc.subjectAIDED SYNTHESIS DESIGN-
dc.subjectSELF-CONSISTENT-FIELD-
dc.subjectREACTIVE FORCE-FIELD-
dc.subjectQUANTUM MONTE-CARLO-
dc.titleCombining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1021/acs.chemrev.1c00107-
dc.identifier.scopusid2-s2.0-85111082741-
dc.identifier.wosid000691784200004-
dc.identifier.bibliographicCitationCHEMICAL REVIEWS, v.121, no.16, pp.9816 - 9872-
dc.relation.isPartOfCHEMICAL REVIEWS-
dc.citation.titleCHEMICAL REVIEWS-
dc.citation.volume121-
dc.citation.number16-
dc.citation.startPage9816-
dc.citation.endPage9872-
dc.type.rimsART-
dc.type.docTypeReview-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusAIDED SYNTHESIS DESIGN-
dc.subject.keywordPlusCOUPLED-CLUSTER THEORY-
dc.subject.keywordPlusDEEP NEURAL-NETWORKS-
dc.subject.keywordPlusDENSITY-FUNCTIONAL-THEORY-
dc.subject.keywordPlusEFFECTIVE CORE POTENTIALS-
dc.subject.keywordPlusMOLECULAR-DYNAMICS SIMULATIONS-
dc.subject.keywordPlusPOTENTIAL-ENERGY SURFACES-
dc.subject.keywordPlusQUANTUM MONTE-CARLO-
dc.subject.keywordPlusREACTIVE FORCE-FIELD-
dc.subject.keywordPlusSELF-CONSISTENT-FIELD-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE