Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor

Authors
Jo, Yong KunJeong, Seong-YongMoon, Young KookJo, Young-MooYoon, Ji-WookLee, Jong-Heun
Issue Date
16-8월-2021
Publisher
NATURE PORTFOLIO
Citation
NATURE COMMUNICATIONS, v.12, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
12
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136843
DOI
10.1038/s41467-021-25290-3
ISSN
2041-1723
Abstract
Formaldehyde, a probable carcinogen, is a ubiquitous indoor pollutant, but its highly selective detection has been a long-standing challenge. Herein, a chemiresistive sensor that can detect ppb-level formaldehyde in an exclusive manner at room temperature is designed. The TiO2 sensor exhibits under UV illumination highly selective detection of formaldehyde and ethanol with negligible cross-responses to other indoor pollutants. The coating of a mixed matrix membrane (MMM) composed of zeolitic imidazole framework (ZIF-7) nanoparticles and polymers on TiO2 sensing films removed ethanol interference completely by molecular sieving, enabling an ultrahigh selectivity (response ratio > 50) and response (resistance ratio > 1,100) to 5 ppm formaldehyde at room temperature. Furthermore, a monolithic and flexible sensor is fabricated successfully using a TiO2 film sandwiched between a flexible polyethylene terephthalate substrate and MMM overlayer. Our work provides a strategy to achieve exclusive selectivity and high response to formaldehyde, demonstrating the promising potential of flexible gas sensors for indoor air monitoring. Formaldehyde, a probable carcinogen, is a ubiquitous indoor pollutant, but its ultraselective detection has been a long-standing challenge. Here, the authors develop a chemiresistive sensor that can detect ppb-level formaldehyde in an exclusive manner at room temperature.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE