Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Predator invasion in predator–prey model with prey-taxis in spatially heterogeneous environment

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, W.-
dc.contributor.authorAhn, I.-
dc.date.accessioned2022-03-02T21:41:10Z-
dc.date.available2022-03-02T21:41:10Z-
dc.date.created2022-03-02-
dc.date.issued2022-06-
dc.identifier.issn1468-1218-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/137549-
dc.description.abstractWe consider a predator–prey model with prey-taxis and Holling-type II functional responses in a spatially heterogeneous environment to analyze the effects of prey-taxis and the heterogeneity of an environment on predator invasion. To achieve our goal, we investigate the stability of semi-trivial solution in which the predator is absent. It is known that both the predator diffusion and the death rate contribute to the predator invasion in a heterogeneous habitat when there is no prey-taxis. In this paper, we show that predator invasion is affected by the prey-taxis and diffusions of the prey-taxis model for a certain range of predator death rates in a heterogeneous environment. Furthermore, in cases where predator invasion by predator diffusion does not occur in a particular death rate range of the predator, predator invasion can occur by prey-taxis in a spatially heterogeneous habitat. In addition, we compare this phenomenon to the corresponding predator–prey model with ratio-dependent functional responses. It is observed that none of the predator's diffusion and prey-taxis affect the predator's invasion, and that only the predator's death rate contributes to predator invasion for the model with ratio-dependent functional responses. © 2021 Elsevier Ltd-
dc.languageEnglish-
dc.language.isoen-
dc.publisherElsevier Ltd-
dc.titlePredator invasion in predator–prey model with prey-taxis in spatially heterogeneous environment-
dc.typeArticle-
dc.contributor.affiliatedAuthorAhn, I.-
dc.identifier.doi10.1016/j.nonrwa.2021.103495-
dc.identifier.scopusid2-s2.0-85121665609-
dc.identifier.wosid000795544200017-
dc.identifier.bibliographicCitationNonlinear Analysis: Real World Applications, v.65-
dc.relation.isPartOfNonlinear Analysis: Real World Applications-
dc.citation.titleNonlinear Analysis: Real World Applications-
dc.citation.volume65-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusLOTKA-VOLTERRA COMPETITION-
dc.subject.keywordPlusDIFFUSION SYSTEM-
dc.subject.keywordPlusDISPERSAL-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordAuthorInvasion-
dc.subject.keywordAuthorLocal stability-
dc.subject.keywordAuthorPrey-taxis-
dc.subject.keywordAuthorSpatially heterogeneous environment-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Data Computational Sciences in Division of Applied Mathematical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE