Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Opportunistic Relay in Multicast Channels With Generalized Shadowed Fading Effects: A Physical Layer Security Perspective

Authors
Shahriyer, S. M. SaumikBadrudduza, A. S. M.Shabab, SarjanaKundu, Milton KumarYu, Heejung
Issue Date
2021
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
kappa - mu shadowed fading; opportunistic relaying; physical layer security; secure outage probability; wireless multicasting
Citation
IEEE ACCESS, v.9, pp.155726 - 155739
Indexed
SCIE
SCOPUS
Journal Title
IEEE ACCESS
Volume
9
Start Page
155726
End Page
155739
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/138707
DOI
10.1109/ACCESS.2021.3128572
ISSN
2169-3536
Abstract
Through ordinary transmissions over wireless multicast networks are greatly hampered due to the simultaneous presence of fading and shadowing of wireless channels, secure transmissions can be enhanced by properly exploiting random attributes of the propagation medium. This study focuses on the utilization of those attributes to enhance the physical layer security (PLS) performance of a dual-hop wireless multicast network over kappa - mu shadow-fading channel under the wiretapping attempts of multiple eavesdroppers. In order to improve the secrecy level, the best relay selection strategy among multiple relays is employed. Performance analysis is carried out based on the mathematical modeling in terms of analytical expressions of non-zero secrecy capacity probability, secure outage probability, and ergodic secrecy capacity over multicast relay networks. Capitalizing on those expressions, the effects of system parameters, i.e., fading, shadowing, the number of antennas, destination receivers, eavesdroppers, and relays, on the secrecy performance are investigated. Numerical results show that the detrimental impacts caused by fading and shadowing can be remarkably mitigated using the well-known opportunistic relaying technique. Moreover, the proposed model unifies secrecy analysis of several classical models, thereby exhibiting enormous versatility than the existing works. Finally, all the numerical results are authenticated utilizing Monte-Carlo simulations.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Electronics and Information Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE