An L-p-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Ildoo | - |
dc.date.accessioned | 2022-04-02T08:41:11Z | - |
dc.date.available | 2022-04-02T08:41:11Z | - |
dc.date.created | 2022-04-01 | - |
dc.date.issued | 2022-03 | - |
dc.identifier.issn | 2194-0401 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/139488 | - |
dc.description.abstract | We obtain uniqueness and existence of a solution u to the following second-order stochastic partial differential equation: du = ((a) over tilde (ij) (omega, t)u(xi xj) + f) dt + g(k)d w(t)(k), t is an element of (0, T); u(0, .) = 0, (1) where T is an element of(0, infinity), w(k) (k = 1, 2, ...) are independent Wiener processes, ((a) over bar (ij) (omega, t)) is a (predictable) nonnegative sysmeric matrix valued stochastic process such that kappa vertical bar xi vertical bar(2) <= (a) over bar (ij) (omega,t)xi(i)xi(j) <= K vertical bar xi vertical bar(2) for all (omega, t, xi) is an element of Omega x (0, T) x R-d for some kappa, K is an element of(0, infinity), f is an element of L-p ((0, T) x R-d, dt x dx; L-r(Omega, F, dP) and g, g(x). L-p ((0, T) x R-d, dt x dx; L-r(Omega, F, dP; l(2)) with 2 <= r <= p < infinity and appropriate measurable conditions. Moreover, for the solution u, we obtain the following maximal regularity moment estimate integral(T)(0) integral(d)(R) (E[vertical bar u(t, x)(r)](p/r) dxdt + integral(T)(0) integral(d)(R) (E[vertical bar u(xx) (t, x)vertical bar(r)](p/r) dxdt <= N(integral(T)(0) integral(d)(R) (E[vertical bar f(t, x)vertical bar(r)])(p/r) dxdt + integral(T)(0) integral(d)(R) (E[vertical bar g(t, x)vertical bar(r)(l2))(p/r) dxdt where N is a positive constant depending only on d, p, r, kappa, K, and T. As an application, for the solution u to (1), the r th moment mr (t, x) := E vertical bar u(t, x)vertical bar(r) is in the parabolic Sobolev space W-p/r(1,2) ((0, T) x R-d ). | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER | - |
dc.subject | SOBOLEV SPACE THEORY | - |
dc.subject | PSEUDODIFFERENTIAL-OPERATORS | - |
dc.subject | SPDES | - |
dc.subject | COEFFICIENTS | - |
dc.subject | DRIVEN | - |
dc.title | An L-p-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Kim, Ildoo | - |
dc.identifier.doi | 10.1007/s40072-021-00201-1 | - |
dc.identifier.scopusid | 2-s2.0-85107805227 | - |
dc.identifier.wosid | 000660801200001 | - |
dc.identifier.bibliographicCitation | STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, v.10, no.1, pp.278 - 316 | - |
dc.relation.isPartOf | STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | - |
dc.citation.title | STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | - |
dc.citation.volume | 10 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 278 | - |
dc.citation.endPage | 316 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
dc.subject.keywordPlus | SOBOLEV SPACE THEORY | - |
dc.subject.keywordPlus | PSEUDODIFFERENTIAL-OPERATORS | - |
dc.subject.keywordPlus | SPDES | - |
dc.subject.keywordPlus | COEFFICIENTS | - |
dc.subject.keywordPlus | DRIVEN | - |
dc.subject.keywordAuthor | Maximal regularity moment estimate | - |
dc.subject.keywordAuthor | Stochastic partial differential equations | - |
dc.subject.keywordAuthor | Zero initial evolution equation | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.