Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of a highly active Fe-N-C catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes

Full metadata record
DC Field Value Language
dc.contributor.authorMehmood, Asad-
dc.contributor.authorAli, Basit-
dc.contributor.authorGong, Mengjun-
dc.contributor.authorKim, Min Gyu-
dc.contributor.authorKim, Ji-Young-
dc.contributor.authorBae, Jee-Hwan-
dc.contributor.authorKucernak, Anthony-
dc.contributor.authorKang, Yong-Mook-
dc.contributor.authorNam, Kyung-Wan-
dc.date.accessioned2022-04-02T15:41:19Z-
dc.date.available2022-04-02T15:41:19Z-
dc.date.created2022-04-01-
dc.date.issued2021-08-15-
dc.identifier.issn0021-9797-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/139559-
dc.description.abstractNitrogen-doped porous carbons containing atomically dispersed iron are prime candidates for substituting platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. These carbon catalysts are classically synthesized via complicated routes involving multiple heat-treatment steps to form the desired Fe-Nx sites. We herein developed a highly active Fe-N-C catalyst comprising of exclusive FeNx sites by a simplified solid-state synthesis protocol involving only a single heat-treatment. Imidazole is pyrolyzed in the presence of an inorganic salt-melt resulting in highly porous carbon sheets decorated with abundant Fe-Nx centers, which yielded a high density of electrochemically accessible active sites (1.36 x 1019 sites g-1) as determined by the in situ nitrite stripping technique. The optimized catalyst delivered a remarkable ORR activity with a half-wave potential (E1/2) of 0.905 VRHE in alkaline electrolyte surpassing the benchmark Pt catalyst by 55 mV. In acidic electrolyte, an E1/2 of 0.760 VRHE is achieved at a low loading level (0.29 mg cm-2). In PEMFC tests, a current density of 2.3 mA cm-2 is achieved at 0.90 ViR-free under H2-O2 conditions, reflecting high kinetic activity of the optimized catalyst. (c) 2021 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectMETAL ELECTROCATALYST-
dc.subjectCARBON-
dc.subjectPERFORMANCE-
dc.subjectPOLYANILINE-
dc.subjectEFFICIENT-
dc.subjectELECTROREDUCTION-
dc.subjectMELAMINE-
dc.subjectDENSITY-
dc.subjectFE/N/C-
dc.subjectSTABILITY-
dc.titleDevelopment of a highly active Fe-N-C catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yong-Mook-
dc.identifier.doi10.1016/j.jcis.2021.03.081-
dc.identifier.scopusid2-s2.0-85103795888-
dc.identifier.wosid000645630200002-
dc.identifier.bibliographicCitationJOURNAL OF COLLOID AND INTERFACE SCIENCE, v.596, pp.148 - 157-
dc.relation.isPartOfJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.titleJOURNAL OF COLLOID AND INTERFACE SCIENCE-
dc.citation.volume596-
dc.citation.startPage148-
dc.citation.endPage157-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusFE/N/C-
dc.subject.keywordPlusMELAMINE-
dc.subject.keywordPlusMETAL ELECTROCATALYST-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPOLYANILINE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorFe-N-C-
dc.subject.keywordAuthorFuel cells-
dc.subject.keywordAuthorNon-precious metal catalysts-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorSite density-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KANG, YONG MOOK photo

KANG, YONG MOOK
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE