Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

Full metadata record
DC Field Value Language
dc.contributor.author강희민-
dc.date.accessioned2022-04-11T02:43:36Z-
dc.date.available2022-04-11T02:43:36Z-
dc.date.created2022-04-08-
dc.date.issued2014-01-
dc.identifier.issn0027-8424-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/139971-
dc.description.abstractSynthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, wh-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATL ACAD SCIENCES-
dc.titleCalcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling-
dc.typeArticle-
dc.contributor.affiliatedAuthor강희민-
dc.identifier.doi10.1073/pnas.1321717111-
dc.identifier.bibliographicCitationPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.111, no.3, pp.990 - 995-
dc.relation.isPartOfPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-
dc.citation.titlePROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-
dc.citation.volume111-
dc.citation.number3-
dc.citation.startPage990-
dc.citation.endPage995-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorbiomimetic material-
dc.subject.keywordAuthorbone metabolism-
dc.subject.keywordAuthormineralized matrix-
dc.subject.keywordAuthorphosphate signaling-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hee min photo

Kang, Hee min
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE