Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Effects of Radio Frequency Sputtering of TiO2 on Li[Li0.07Ni0.38Co0.15Mn0.4]O-2 Cathode for Lithium Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.author유승호-
dc.date.accessioned2022-04-11T05:44:35Z-
dc.date.available2022-04-11T05:44:35Z-
dc.date.created2022-04-08-
dc.date.issued2013-12-
dc.identifier.issn1533-4880-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/139984-
dc.description.abstractA radio frequency (RF) sputtering system is used to coat nano-thick TiO2 layer on the overlithiated layered metal oxide (OLO) electrode. The X-ray diffraction (XRD) and the field emission-scanning electron microscope (FE-SEM) images indicate amorphous TiO2 is coated on the top surface of the electrode with a thickness of similar to 20 nm for the 40 min sputtered sample. The sample sputtered for 40 minutes cycled at 90 mA g(-1) between 2 and 4.8 V versus Li+/Li has 15 mA h g(-1) more specific capacity at 100th cycle than that of the uncoated sample. In the voltage profiles, additional overpotential is unobservable upon sputtering TiO2 in comparison to that of the reference sample. Further analyses by the electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) demonstrate the sputtered sample has less electrolyte decomposition products on the surface than that of the reference sample. Moreover, in the case of sputtering, reduced amount of transition metal and Li2O are deposited on the surface of the counter electrode, Li. In summary, the sputtered TiO2 acts as nano-sized artificial solid electrolyte interface (SEI) layer, which protects the surface of the electrode and improves kinetic properties, leading to improved performance.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER SCIENTIFIC PUBLISHERS-
dc.titleThe Effects of Radio Frequency Sputtering of TiO2 on Li[Li0.07Ni0.38Co0.15Mn0.4]O-2 Cathode for Lithium Ion Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthor유승호-
dc.identifier.doi10.1166/jnn.2013.8128-
dc.identifier.bibliographicCitationJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.13, no.12, pp.7924 - 7931-
dc.relation.isPartOfJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY-
dc.citation.titleJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY-
dc.citation.volume13-
dc.citation.number12-
dc.citation.startPage7924-
dc.citation.endPage7931-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorCoating-
dc.subject.keywordAuthorLithium Ion Batteries-
dc.subject.keywordAuthorSputtering-
dc.subject.keywordAuthorSurface Treatment-
dc.subject.keywordAuthorTitanium Oxide-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE