Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Low-shear modeled microgravity affects metabolic networks of Escherichia coli O157:H7 EDL933: Further insights into space-microbiology consequences

Full metadata record
DC Field Value Language
dc.contributor.authorKim, H.W.-
dc.contributor.authorPark, B.H.-
dc.contributor.authorPark, H.-
dc.contributor.authorChoi, I.G.-
dc.contributor.authorRhee, M.S.-
dc.date.accessioned2022-04-12T21:41:48Z-
dc.date.available2022-04-12T21:41:48Z-
dc.date.created2022-04-12-
dc.date.issued2022-04-
dc.identifier.issn0963-9969-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/140168-
dc.description.abstractEscherichia coli O157:H7 EDL933 exposed to low-shear modeled microgravity (LSMMG) and normal gravity (NG) was used for a transcriptomic analysis. The modified Gompertz model (R2 = 0.81–0.99) showed an increased growth rate of E. coli O157:H7 under LSMMG. The mechanism of this active growth was associated with highly upregulated genes in nutrient and energy metabolism, including the TCA cycle, glycolysis, and pyruvate metabolism. Green fluorescent protein-labeled E. coli O157:H7 also formed significantly thick biofilms (fluorescent unit: NG, 1,263; LSMMG, 1,533; P = 0.0473) under LSMMG, whereas bacterial mobility decreased slightly (P = 0.0310). The transcriptomic analysis revealed that genes encoding glycogen biosynthesis (glgCAP operon) were upregulated (1.40 to 1.82 of log fold change [FC]) due to the downregulation of csrA (2.17 of log FC), which is the global regulator of biofilm formation of E. coli. We also identified 52 genes in E. coli O157:H7 EDL933 that were involved in the secretion pathway, 32 of which showed ≥2-fold significant changes in transcription levels after cultivation under LSMMG. Notably, all downregulated genes belonged to the type III and VI secretion systems, indicating that host cell contact secretion was dysregulated in the LSMMG cultures compared to the NG cultures. LSMMG also stimulates the pathogenicity of E. coli O157:H7 via transcriptional upregulation of Shiga toxin 1 (1.36 to 2.81 log FC) and toxin HokB (6.1 log FC). Our results suggest LSMMG affects bacterial growth, biofilm formation, and E. coli O157:H7 pathogenicity at some transcriptional levels, which indicates the importance of understanding biological consequences. © 2022 Elsevier Ltd-
dc.languageEnglish-
dc.language.isoen-
dc.publisherElsevier Ltd-
dc.titleLow-shear modeled microgravity affects metabolic networks of Escherichia coli O157:H7 EDL933: Further insights into space-microbiology consequences-
dc.typeArticle-
dc.contributor.affiliatedAuthorRhee, M.S.-
dc.identifier.doi10.1016/j.foodres.2022.111013-
dc.identifier.scopusid2-s2.0-85124693014-
dc.identifier.wosid000783080100002-
dc.identifier.bibliographicCitationFood Research International, v.154-
dc.relation.isPartOfFood Research International-
dc.citation.titleFood Research International-
dc.citation.volume154-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaFood Science & Technology-
dc.relation.journalWebOfScienceCategoryFood Science & Technology-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusSIMULATED MICROGRAVITY-
dc.subject.keywordPlusBIOFILM FORMATION-
dc.subject.keywordPlusSTRESS-RESPONSE-
dc.subject.keywordPlusATCC 43889-
dc.subject.keywordPlusALTERS-
dc.subject.keywordPlusVIRULENCE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusTYPHIMURIUM-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE