Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Linear and energy stable schemes for the Swift–Hohenberg equation with quadratic-cubic nonlinearity based on a modified scalar auxiliary variable approach

Full metadata record
DC Field Value Language
dc.contributor.authorYang, J.-
dc.contributor.authorKim, J.-
dc.date.accessioned2022-05-17T23:41:37Z-
dc.date.available2022-05-17T23:41:37Z-
dc.date.created2022-05-17-
dc.date.issued2021-06-
dc.identifier.issn0022-0833-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/141182-
dc.description.abstractIn this study, we develop linear and energy stable numerical schemes for the Swift–Hohenberg equation with quadratic-cubic nonlinearity. A modified scalar auxiliary variable (SAV) approach is used to construct the temporally first- and second-order accurate discretizations. Different from the classical SAV approach, the proposed schemes permit us to solve the governing equations in a step-by-step manner, i.e., the calculation of inner product is not needed. We analytically prove the energy stability. We solve the resulting system of discrete equations using the linear multigrid method. We perform various numerical examples to show the accuracy and energy stability of the proposed method. The pattern formations in two- and three-dimensional spaces are also simulated. © 2021, The Author(s), under exclusive licence to Springer Nature B.V.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSpringer Science and Business Media B.V.-
dc.titleLinear and energy stable schemes for the Swift–Hohenberg equation with quadratic-cubic nonlinearity based on a modified scalar auxiliary variable approach-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, J.-
dc.identifier.doi10.1007/s10665-021-10122-6-
dc.identifier.scopusid2-s2.0-85107151523-
dc.identifier.wosid000797917100001-
dc.identifier.bibliographicCitationJournal of Engineering Mathematics, v.128, no.1-
dc.relation.isPartOfJournal of Engineering Mathematics-
dc.citation.titleJournal of Engineering Mathematics-
dc.citation.volume128-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.subject.keywordPlusFINITE-DIFFERENCE SCHEME-
dc.subject.keywordPlusLOCAL COLLOCATION METHOD-
dc.subject.keywordPlusCAHN-HILLIARD-
dc.subject.keywordPlusNUMERICAL SCHEME-
dc.subject.keywordPlusCONVERGENCE ANALYSIS-
dc.subject.keywordPlusCRYSTAL-
dc.subject.keywordPlus2ND-ORDER-
dc.subject.keywordPlusIMPLEMENTATION-
dc.subject.keywordAuthorEnergy stability-
dc.subject.keywordAuthorPattern formation-
dc.subject.keywordAuthorSAV approach-
dc.subject.keywordAuthorSwift–Hohenberg equation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE