Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

<p>FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries & nbsp;</p>

Full metadata record
DC Field Value Language
dc.contributor.authorKandula, Syam-
dc.contributor.authorYoun, Beom Sik-
dc.contributor.authorCho, Jinhan-
dc.contributor.authorLim, Hyung-Kyu-
dc.contributor.authorSon, Jeong Gon-
dc.date.accessioned2022-06-09T07:41:02Z-
dc.date.available2022-06-09T07:41:02Z-
dc.date.created2022-06-09-
dc.date.issued2022-07-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/141708-
dc.description.abstractDeveloping effective anode materials for sodium-ion batteries (SIBs) remains challenging. Although FeS2 has a high theoretical capacity, it suffers from significant volume changes during charge/discharge and forms soluble polysulfides at lower potentials (below 0.8 V vs. Na/Na+), making practical application difficult. We have developed an effective strategy to synthesize N-doped carbon-coated FeS2 nanorattles encapsulated in N/S dual-doped graphene/single-walled carbon nanotubes (G/SWCNTs) via hydrothermal vulcanization (FSCGS). This approach enabled the simultaneous formation of nanorattle structures and N/S dual-element doping into the G/ SWCNT network. Using the FSCGS sample as an anode for SIBs, a remarkable specific capacity of 1,190 mAh g(-1) at a current density of 0.1 A g(-1) was achieved, with an excellent rate capability of 476 mAh g(-1) at 10.0 A g(-1). Moreover, it exhibited superior cyclic stability, with a capacity retention of 91.3% at 0.5 A g(-1) after 200 cycles. First-principles calculations revealed that pyridinic-N/S doping of the basal graphene network improved Na+ reduction, resulting in enhanced electrochemical performance. The effective electrochemical functioning of the FSCGS anode material was attributed to an optimized hierarchical architecture and the excellent electrical conductivity/electrochemical activity provided by the dual carbon entities (N-doped carbon and N/S dual-doped G/SWCNT network).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectPYRITE FES2 NANOCRYSTALS-
dc.subjectLITHIUM-
dc.subjectBATTERIES-
dc.subjectCATHODE-
dc.subjectOXIDE-
dc.subjectLIFE-
dc.title&lt;p&gt;FeS2@N-C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries &amp; nbsp;&lt;/p&gt;-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Jinhan-
dc.contributor.affiliatedAuthorSon, Jeong Gon-
dc.identifier.doi10.1016/j.cej.2022.135678-
dc.identifier.scopusid2-s2.0-85126120774-
dc.identifier.wosid000783412200003-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.439-
dc.relation.isPartOfCHEMICAL ENGINEERING JOURNAL-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume439-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusPYRITE FES2 NANOCRYSTALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusLIFE-
dc.subject.keywordAuthor&lt-
dc.subject.keywordAuthorp&gt-
dc.subject.keywordAuthorIron sulfide(FeS2)&lt-
dc.subject.keywordAuthor/p&gt-
dc.subject.keywordAuthornull-
dc.subject.keywordAuthorGraphene/CNT-
dc.subject.keywordAuthorSodium-ion batteries-
dc.subject.keywordAuthorAnode material-
dc.subject.keywordAuthorEnergy storage-
dc.subject.keywordAuthorSpecific capacity-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Son, Jeong Gon photo

Son, Jeong Gon
KU-KIST융합대학원
Read more

Altmetrics

Total Views & Downloads

BROWSE