Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Polyamide thin films with nanochannel networks synthesized at the liquid-gas interface for water purification

Full metadata record
DC Field Value Language
dc.contributor.authorJeong, Seungyeop-
dc.contributor.authorYuan, Guangcui-
dc.contributor.authorSatija, Sushil K.-
dc.contributor.authorJeon, Nayeong-
dc.contributor.authorLee, Eunji-
dc.contributor.authorKim, Youngjin-
dc.contributor.authorChoi, Soohoon-
dc.contributor.authorKoo, Jaseung-
dc.date.accessioned2022-08-10T08:41:07Z-
dc.date.available2022-08-10T08:41:07Z-
dc.date.issued2022-09-05-
dc.identifier.issn0376-7388-
dc.identifier.issn1873-3123-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/142719-
dc.description.abstractAn important challenge concerning thin-film composite (TFC) membranes in brine treatment is to increase their water permeance while maintaining salt rejection for desalination performance. Structural control of polyamide (PA) thin films is a key factor in improving the desalination performance. In this study, we employed a Langmuir-Schaefer technique to fabricate PA Langmuir monolayers by interfacial polymerization of m-phenylenediamine and trimesoyl chloride at the liquid-gas interface and deposition on polysulfone supports. This technique allows the fabrication of nanoscale-controlled PA multilayers (2.3 nm per layer) with a nanochanneled structure through repeated deposition. The nanochannels of PA thin-film multilayers were clarified using the neutron reflectivity technique. UV treatment facilitates the maintenance of water-permeable sites in the nanochannels, which increases the water permeance up to 203% without loss of salt rejection performance.-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titlePolyamide thin films with nanochannel networks synthesized at the liquid-gas interface for water purification-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1016/j.memsci.2022.120671-
dc.identifier.scopusid2-s2.0-85132318814-
dc.identifier.wosid000814789500001-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.657-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume657-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusJANUS GRAPHENE OXIDE-
dc.subject.keywordPlusSEAWATER DESALINATION-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordAuthorPolyamide membrane synthesis-
dc.subject.keywordAuthorLangmuir Schaefer technique-
dc.subject.keywordAuthorDesalination-
dc.subject.keywordAuthorNeutron reflectivity-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Environmental Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young jin photo

Kim, Young jin
Graduate School (Department of Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE