Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Transient Analysis of Flow Unsteadiness and Noise Characteristics in a Centrifugal Compressor with a Novel Vaned Diffuser

Full metadata record
DC Field Value Language
dc.contributor.authorZamiri, Ali-
dc.contributor.authorPark, Kun Sung-
dc.contributor.authorChoi, Minsuk-
dc.contributor.authorChung, Jin Taek-
dc.date.accessioned2022-11-04T19:43:02Z-
dc.date.available2022-11-04T19:43:02Z-
dc.date.created2022-11-04-
dc.date.issued2021-04-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/144689-
dc.description.abstractThe demands to apply transonic centrifugal compressor have increased in the advanced gas turbine engines. Various techniques are used to increase the aerodynamic performance of the centrifugal compressor. The effects of the inclined leading edges in diffuser vanes of a transonic centrifugal compressor on the flow-field unsteadiness and noise generation are investigated by solving the compressible, three-dimensional, transient Navier-Stokes equations. Diffuser vanes with various inclination angles of the leading edge from shroud-to-hub and hub-to-shroud are numerically modeled. The results show that the hub-to-shroud inclined leading edge improves the compressor performance (2.6%), and the proper inclination angle is effective to increase the stall margin (3.88%). In addition, in this study, the transient pressure variations and radiated noise prediction at the design operating point of the compressor are emphasized. The influences of the inclined leading edges on the pressure waves were captured in time/space domain with different convective velocities. The pressure fluctuation spectra are calculated to investigate the tonal blade passing frequency (BPF) noise, and it is shown that the applied inclination angles in the diffuser blades are effective, not only to improve the aerodynamic performance and stall margin, but also to reduce the BPF noise (7.6 dB sound pressure level reduction). Moreover, it is found that the diffuser vanes with inclination angles could suppress the separation regions and eddy structures inside the passages of the diffuser, which results in reduction of the overall sound pressure level and the broadband noise radiated from the compressor.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherMDPI-
dc.subjectAERODYNAMIC PERFORMANCE-
dc.subjectSTALL-
dc.titleTransient Analysis of Flow Unsteadiness and Noise Characteristics in a Centrifugal Compressor with a Novel Vaned Diffuser-
dc.typeArticle-
dc.contributor.affiliatedAuthorChung, Jin Taek-
dc.identifier.doi10.3390/app11073191-
dc.identifier.scopusid2-s2.0-85104082736-
dc.identifier.wosid000638355300001-
dc.identifier.bibliographicCitationAPPLIED SCIENCES-BASEL, v.11, no.7-
dc.relation.isPartOfAPPLIED SCIENCES-BASEL-
dc.citation.titleAPPLIED SCIENCES-BASEL-
dc.citation.volume11-
dc.citation.number7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusAERODYNAMIC PERFORMANCE-
dc.subject.keywordPlusSTALL-
dc.subject.keywordAuthorcentrifugal compressor-
dc.subject.keywordAuthorinclined leading edge-
dc.subject.keywordAuthorvaned diffuser-
dc.subject.keywordAuthorstall margin-
dc.subject.keywordAuthorblade passing frequency-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHUNG, Jin Taek photo

CHUNG, Jin Taek
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE