Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An energy-stable method for a phase-field surfactant model

Full metadata record
DC Field Value Language
dc.contributor.authorTan, Zhijun-
dc.contributor.authorTian, Yuan-
dc.contributor.authorYang, Junxiang-
dc.contributor.authorWu, Yanyao-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2022-11-17T12:40:20Z-
dc.date.available2022-11-17T12:40:20Z-
dc.date.created2022-11-17-
dc.date.issued2022-11-01-
dc.identifier.issn0020-7403-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/145635-
dc.description.abstractTwo-phase systems with surfactants have extensive applications in scientific and industrial fields. In this paper, we consider a second-order time-accurate, highly efficient, and energy-stable scheme for a phase -field surfactant equation satisfying the energy boundedness. Because of the nonlinear and coupling terms in phase-field surfactant systems, it is not trivial to develop a totally decoupled and energy dissipation -preserving computational scheme. To address this challenge, we use an efficient variant of the scalar auxiliary variable (SAV) approach. The present method has the following merits: (i) The time-marching scheme is completely decoupled and the numerical implementation is efficient; (ii) the energy stability can be estimated in a straightforward manner; and (iii) various surfactant-laden dynamics can be well simulated. Various computational tests are conducted to validate the desired temporal accuracy, energy stability, and capability.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectIMMERSED BOUNDARY METHOD-
dc.subjectLEVEL-SET METHOD-
dc.subjectINTERFACIAL FLOWS-
dc.subjectLATTICE-BOLTZMANN-
dc.subject2-PHASE FLOWS-
dc.subjectDYNAMICS-
dc.subject2ND-ORDER-
dc.subjectSCHEME-
dc.subjectEQUATION-
dc.subject1ST-
dc.titleAn energy-stable method for a phase-field surfactant model-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.ijmecsci.2022.107648-
dc.identifier.scopusid2-s2.0-85136709464-
dc.identifier.wosid000850896700003-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, v.233-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.titleINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.volume233-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusIMMERSED BOUNDARY METHOD-
dc.subject.keywordPlusLEVEL-SET METHOD-
dc.subject.keywordPlusINTERFACIAL FLOWS-
dc.subject.keywordPlusLATTICE-BOLTZMANN-
dc.subject.keywordPlus2-PHASE FLOWS-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlus2ND-ORDER-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordPlusEQUATION-
dc.subject.keywordPlus1ST-
dc.subject.keywordAuthorNovel SAV approach-
dc.subject.keywordAuthorEfficient algorithm-
dc.subject.keywordAuthorPhase-field surfactant-
dc.subject.keywordAuthorEnergy dissipation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE