Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk

Full metadata record
DC Field Value Language
dc.contributor.authorSung, Junghyun-
dc.contributor.authorShin, Dongjin-
dc.contributor.authorCho, HyunHee-
dc.contributor.authorLee, Seong Won-
dc.contributor.authorPark, Seungmin-
dc.contributor.authorKim, Young Duck-
dc.contributor.authorMoon, Jong Sung-
dc.contributor.authorKim, Je-Hyung-
dc.contributor.authorGong, Su-Hyun-
dc.date.accessioned2022-11-17T15:40:48Z-
dc.date.available2022-11-17T15:40:48Z-
dc.date.created2022-11-17-
dc.date.issued2022-11-
dc.identifier.issn1749-4885-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/145652-
dc.description.abstractIndirect-bandgap transition lasing, even under continuous-wave excitation at room temperature, is demonstrated in an ultra-thin WS2 disk. Small semiconductor lasers that can be integrated on a chip are essential for a wide range of optical applications, including optical computing, communication and sensing. Practical laser applications have only been developed with direct-bandgap materials because of a general belief that lasing action from indirect-bandgap materials is almost impossible. Here we report unexpected indirect-bandgap transition lasing in an ultra-thin WS2 disk. We demonstrate that a 50-nm-thick WS2 disk offers efficient optical gain and whispering gallery modes that are sufficient for lasing action. As a result, the WS2 disk exhibits indirect transition lasing, even under continuous-wave excitation at room temperature. Our experimental results are in close agreement with theoretical modelling for phonon-assisted photon lasing. The results derived from external cavity-free ultra-thin WS2 layers offer a new direction for van-der-Waals-material-based nanophotonics and introduce the possibility for optical devices based on indirect-bandgap materials.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PORTFOLIO-
dc.subjectOPTICAL GAIN-
dc.subjectSILICON-
dc.titleRoom-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk-
dc.typeArticle-
dc.contributor.affiliatedAuthorGong, Su-Hyun-
dc.identifier.doi10.1038/s41566-022-01085-w-
dc.identifier.scopusid2-s2.0-85139769100-
dc.identifier.wosid000867521100003-
dc.identifier.bibliographicCitationNATURE PHOTONICS, v.16, no.11, pp.792 - +-
dc.relation.isPartOfNATURE PHOTONICS-
dc.citation.titleNATURE PHOTONICS-
dc.citation.volume16-
dc.citation.number11-
dc.citation.startPage792-
dc.citation.endPage+-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusOPTICAL GAIN-
dc.subject.keywordPlusSILICON-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE