Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Three Phase Boundary Engineering Using Hydrophilic-Hydrophobic Poly(N-isopropylacrylamide) with Oxygen-Vacant TiO2 Photocatalysts for Photocatalytic N-2 Reduction

Authors
Lee, ChoheeKim, HyejeongJang, Youn Jeong
Issue Date
26-9월-2022
Publisher
AMER CHEMICAL SOC
Keywords
photocatalysis; photocatalytic N-2 reduction; three phase boundary; ammonia; mass transport
Citation
ACS APPLIED ENERGY MATERIALS, v.5, no.9, pp.11018 - 11024
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED ENERGY MATERIALS
Volume
5
Number
9
Start Page
11018
End Page
11024
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/145731
DOI
10.1021/acsaem.2c01674
ISSN
2574-0962
Abstract
The photocatalytic N2 reduction reaction (PNRR) is a promising route for producing NH3 using renewable energy resources under ambient conditions. However, the performance of PNRR is low for practical applications due to two main challenges: the ineffective adsorption and activation of the inert N2 molecules on catalysts and inefficient formation of three phase boundary (TPB) of N2 (gas), H2O (liquid), and catalyst (solid). Herein, an advanced TPB-engineered PNRR system was designed using oxygen-vacant TiO2 photocatalysts embedded in poly(N-isopropy-lacrylamide) (PNIPAm). The oxygen vacancies in the TiO2 lattice generated Ti3+ species, which functioned as active sites. The physicochemical properties of PNIPAm including porosity and hydrophilic-hydrophobic nature are changed upon environmental temperature, and thus the relative concentration of N2 and H2O around oxygen-vacant TiO2 photocatalysts can be adjusted to have efficient TPB for the PNRR. Furthermore, the oxygen-vacant TiO2 with PNIPAm exhibited a significantly high NH3 production rate (11.12 mu mol g-1 h-1) at the lower critical solution temperature (LCST; 32 & DEG;C), which decreased with a change in the LCST. This study is the first attempt at combining defect engineering of TiO2 photocatalysts and TPB engineering using a thermo-responsive polymeric hydrogel for effective PNRRs. The experimental results and discussion contained in this study can develop to design efficient photocatalysts for the PNRRs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE