Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jinwon-
dc.contributor.authorLee, Hyunoh-
dc.contributor.authorMun, Duhwan-
dc.date.accessioned2022-11-18T15:40:16Z-
dc.date.available2022-11-18T15:40:16Z-
dc.date.created2022-11-17-
dc.date.issued2022-09-01-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/145770-
dc.description.abstractIn the manufacturing industry, all things related to a product manufactured are generated and managed with a three-dimensional (3D) computer-aided design (CAD) system. CAD models created in a 3D CAD system are represented as geometric and topological information for exchange between different CAD systems. Although 3D CAD models are easy to use for product design, it is not suitable for direct use in manufacturing since information on machining features is absent. This study proposes a novel deep learning model to recognize machining features from a 3D CAD model and detect feature areas using gradient-weighted class activation mapping (Grad-CAM). To train the deep learning networks, we construct a dataset consisting of single and multi-feature. Our networks comprised of 12 layers classified the machining features with high accuracy of 98.81% on generated datasets. In addition, we estimated the area of the machining feature by applying Grad-CAM to the trained model. The deep learning model for machining feature recognition can be utilized in various fields such as 3D model simplification, computer-aided engineering, mechanical part retrieval, and assembly component identification.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PORTFOLIO-
dc.subjectDECOMPOSITION-
dc.subjectDESIGN-
dc.title3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models-
dc.typeArticle-
dc.contributor.affiliatedAuthorMun, Duhwan-
dc.identifier.doi10.1038/s41598-022-19212-6-
dc.identifier.scopusid2-s2.0-85137088050-
dc.identifier.wosid000848760800058-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.12, no.1-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume12-
dc.citation.number1-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusDESIGN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE