Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Advances in dielectric performance of atomically engineered Sr1.8Bi0.2Nb3O10 perovskite nanosheet thin films

Full metadata record
DC Field Value Language
dc.contributor.authorYim, Haena-
dc.contributor.authorYoo, So Yeon-
dc.contributor.authorChoi, Haneul-
dc.contributor.authorChang, Hye Jung-
dc.contributor.authorHwang, Seong-Ju-
dc.contributor.authorNahm, Sahn-
dc.contributor.authorOsada, Minoru-
dc.contributor.authorChoi, Ji-Won-
dc.date.accessioned2022-12-08T11:41:54Z-
dc.date.available2022-12-08T11:41:54Z-
dc.date.created2022-12-08-
dc.date.issued2022-12-05-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/146473-
dc.description.abstractThe search for new high-performance dielectric materials has attracted considerable research interest. Several mechanisms to achieve high permittivity have been proposed, such as BaTiO3-based perovskites or CaCu3Ti4O12. However, developing high-performance thin films remains a challenge. Here, we propose a new material design route to achieve high permittivity behavior in atomically thin films. We present a concrete example of Dion-Jacobson-type KSr2-xBixNb3O10 and its cation-exchanged form HSr2-xBixNb3O10, which exhibits a stable colossal permittivity and low dielectric loss. In addition, Sr2(1-x)Bi2xNb3O10-delta na-nosheets were obtained by chemical exfoliation, with a high dielectric permittivity of over 50 0-the highest among all known dielectrics in ultrathin films (< 20 nm). The Bi substitution of Sr2Nb3O10 led to a two-fold increase in the dielectric permittivity owing to the higher polarizability of Bi ions. Our proposed method provides a strategy for obtaining new high-k nanoscale dielectrics for use in nanoscaled electronics.(c) 2022 Published by Elsevier B.V.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectGRAIN-SIZE-
dc.subjectDEAD-LAYER-
dc.titleAdvances in dielectric performance of atomically engineered Sr1.8Bi0.2Nb3O10 perovskite nanosheet thin films-
dc.typeArticle-
dc.contributor.affiliatedAuthorNahm, Sahn-
dc.identifier.doi10.1016/j.jallcom.2022.166606-
dc.identifier.scopusid2-s2.0-85135726595-
dc.identifier.wosid000862935600002-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.925-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume925-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusDEAD-LAYER-
dc.subject.keywordAuthorPerovskite-
dc.subject.keywordAuthorDielectric-
dc.subject.keywordAuthorAtomic modification-
dc.subject.keywordAuthorNanosheet-
dc.subject.keywordAuthorChemical exfoliation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE