Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A weighted learning approach for sufficient dimension reduction in binary classification

Full metadata record
DC Field Value Language
dc.contributor.authorSeung Jun Shin-
dc.date.accessioned2021-08-27T23:22:52Z-
dc.date.available2021-08-27T23:22:52Z-
dc.date.created2021-04-22-
dc.date.issued2018-06-19-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/18747-
dc.publisherEcosta-
dc.titleA weighted learning approach for sufficient dimension reduction in binary classification-
dc.title.alternativeA weighted learning approach for sufficient dimension reduction in binary classification-
dc.typeConference-
dc.contributor.affiliatedAuthorSeung Jun Shin-
dc.identifier.bibliographicCitationEcosta 2018-
dc.relation.isPartOfEcosta 2018-
dc.relation.isPartOfEcosta 2018-
dc.citation.titleEcosta 2018-
dc.citation.conferencePlaceCC-
dc.citation.conferencePlace홍콩-
dc.citation.conferenceDate2018-06-19-
dc.type.rimsCONF-
dc.description.journalClass1-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Political Science & Economics > Department of Statistics > 2. Conference Papers

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE