FDG metabolic parameter-based models for predicting recurrence after upfront surgery in synchronous colorectal cancer liver metastasis
- Authors
- Lee, Hyo Sang; Kwon, Hyun Woo; Lim, Seok-Byung; Kim, Jin Cheon; Yu, Chang Sik; Hong, Yong Sang; Kim, Tae Won; Oh, Minyoung; Han, Sangwon; Oh, Jae Hwan; Park, Sohyun; Kim, Tae-Sung; Kim, Seok-ki; Kim, Hyun Joo; Kwak, Jae Young; Oh, Ho-Suk; Kim, Sungeun; Kwak, Jung-Myun; Lee, Ji Sung; Kim, Jae Seung
- Issue Date
- 1-Mar-2023
- Publisher
- SPRINGER
- Keywords
- Fluorodeoxyglucose F18; Positron emission tomography; Colorectal neoplasms; Liver neoplasms; Prognosis
- Citation
- EUROPEAN RADIOLOGY, v.33, no.3, pp 1746 - 1756
- Pages
- 11
- Indexed
- SCIE
SCOPUS
- Journal Title
- EUROPEAN RADIOLOGY
- Volume
- 33
- Number
- 3
- Start Page
- 1746
- End Page
- 1756
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/189847
- DOI
- 10.1007/s00330-022-09141-3
- ISSN
- 0938-7994
1432-1084
- Abstract
- Objective This study aimed to develop and validate post- and preoperative models for predicting recurrence after curative-intent surgery using an FDG PET-CT metabolic parameter to improve the prognosis of patients with synchronous colorectal cancer liver metastasis (SCLM). Methods In this retrospective multicenter study, consecutive patients with resectable SCLM underwent upfront surgery between 2006 and 2015 (development cohort) and between 2006 and 2017 (validation cohort). In the development cohort, we developed and internally validated the post- and preoperative models using multivariable Cox regression with an FDG metabolic parameter (metastasis-to-primary-tumor uptake ratio [M/P ratio]) and clinicopathological variables as predictors. In the validation cohort, the models were externally validated for discrimination, calibration, and clinical usefulness. Model performance was compared with that of Fong's clinical risk score (FCRS). Results A total of 374 patients (59.1 +/- 10.5 years, 254 men) belonged in the development cohort and 151 (60.3 +/- 12.0 years, 94 men) in the validation cohort. The M/P ratio and nine clinicopathological predictors were included in the models. Both postoperative and preoperative models showed significantly higher discrimination than FCRS (p < .05) in the external validation (time-dependent AUC = 0.76 [95% CI 0.68-0.84] and 0.76 [0.68-0.84] vs. 0.65 [0.57-0.74], respectively). Calibration plots and decision curve analysis demonstrated that both models were well calibrated and clinically useful. The developed models are presented as a web-based calculator (https://cpmodel.shinyapps.io/SCLM/) and nomograms. Conclusions FDG metabolic parameter-based prognostic models are well-calibrated recurrence prediction models with good discriminative power. They can be used for accurate risk stratification in patients with SCLM.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medical Science > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.