Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Diffeomorphic Counterfactuals With Generative Models

Full metadata record
DC Field Value Language
dc.contributor.authorDombrowski, Ann-Kathrin-
dc.contributor.authorGerken, Jan-
dc.contributor.authorMuller, Klaus-Robert-
dc.contributor.authorKessel, Pan-
dc.date.accessioned2024-11-19T01:00:54Z-
dc.date.available2024-11-19T01:00:54Z-
dc.date.issued2024-05-
dc.identifier.issn0162-8828-
dc.identifier.issn1939-3539-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/199167-
dc.description.abstractCounterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and validate the quality of the generated counterfactuals using various qualitative and quantitative measures.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE COMPUTER SOC-
dc.titleDiffeomorphic Counterfactuals With Generative Models-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TPAMI.2023.3339980-
dc.identifier.scopusid2-s2.0-85179788388-
dc.identifier.wosid001196751500052-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.46, no.5, pp 3257 - 3274-
dc.citation.titleIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE-
dc.citation.volume46-
dc.citation.number5-
dc.citation.startPage3257-
dc.citation.endPage3274-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusDEEP-
dc.subject.keywordAuthorCounterfactual explanations-
dc.subject.keywordAuthorexplainable artificial intelligence-
dc.subject.keywordAuthordata manifold-
dc.subject.keywordAuthorgenerative models-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Muller, Klaus Robert photo

Muller, Klaus Robert
Graduate School (Department of Artificial Intelligence)
Read more

Altmetrics

Total Views & Downloads

BROWSE