Diffeomorphic Counterfactuals With Generative Models
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dombrowski, Ann-Kathrin | - |
dc.contributor.author | Gerken, Jan | - |
dc.contributor.author | Muller, Klaus-Robert | - |
dc.contributor.author | Kessel, Pan | - |
dc.date.accessioned | 2024-11-19T01:00:54Z | - |
dc.date.available | 2024-11-19T01:00:54Z | - |
dc.date.issued | 2024-05 | - |
dc.identifier.issn | 0162-8828 | - |
dc.identifier.issn | 1939-3539 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/199167 | - |
dc.description.abstract | Counterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and validate the quality of the generated counterfactuals using various qualitative and quantitative measures. | - |
dc.format.extent | 18 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE COMPUTER SOC | - |
dc.title | Diffeomorphic Counterfactuals With Generative Models | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TPAMI.2023.3339980 | - |
dc.identifier.scopusid | 2-s2.0-85179788388 | - |
dc.identifier.wosid | 001196751500052 | - |
dc.identifier.bibliographicCitation | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.46, no.5, pp 3257 - 3274 | - |
dc.citation.title | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE | - |
dc.citation.volume | 46 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 3257 | - |
dc.citation.endPage | 3274 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.subject.keywordPlus | NEURAL-NETWORKS | - |
dc.subject.keywordPlus | DEEP | - |
dc.subject.keywordAuthor | Counterfactual explanations | - |
dc.subject.keywordAuthor | explainable artificial intelligence | - |
dc.subject.keywordAuthor | data manifold | - |
dc.subject.keywordAuthor | generative models | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.