Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

딥러닝을 이용한 부채널 데이터 압축 프레임 워크Side-Channel Archive Framework Using Deep Learning-Based Leakage Compression

Other Titles
Side-Channel Archive Framework Using Deep Learning-Based Leakage Compression
Authors
정상윤진성현김희석
Issue Date
Jun-2024
Publisher
한국정보보호학회
Keywords
Side-Channel Analysis; Compression; Autoencoder; Deep learning
Citation
정보보호학회논문지, v.34, no.3, pp 379 - 392
Pages
14
Indexed
KCI
Journal Title
정보보호학회논문지
Volume
34
Number
3
Start Page
379
End Page
392
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/199836
ISSN
1598-3986
2288-2715
Abstract
데이터의 급속한 증가와 함께 저장 공간 절약과 데이터 전송의 효율성이 중요한 문제로 대두되면서, 데이터 압축 기술의 효율성 연구가 중요해졌다. 무손실 알고리즘은 원본 데이터를 정확히 복원할 수 있지만, 압축 비율이 제한적이며, 손실 알고리즘은 높은 압축률을 제공하지만 데이터의 일부 손실을 수반한다. 이에 딥러닝 기반 압축 알고리즘, 특히 오토인코더 모델이 데이터 압축 분야에서 활발한 연구가 진행됐다. 본 연구에서는 오토인코더를 활용한 새로운 부채널 분석 데이터 압축기를 제안한다. 제안하는 부채널 데이터 대상 압축기는 부채널데이터 특성을 잘 유지할 뿐만 아니라, 기존의 널리 사용되는 Delfate 압축방식 대비 높은 압축률을 보인다. 로컬 연결 레이어를 사용한 인코더는 부채널 데이터의 시점별 특성을 효과적으로 보존하고, 디코더는 멀티 레이어 퍼셉트론을 사용하여 빠른 압축 해제 시간을 유지한다. 상관 전력 분석을 통해 제안된 압축기가 부채널 데이터의 특성을 손실 없이 데이터 압축이 가능을 증명하였다.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Cyber Security > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, HeeSeok photo

Kim, HeeSeok
Graduate School (Department of Cyber Security)
Read more

Altmetrics

Total Views & Downloads

BROWSE