Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Wonjun-
dc.date.accessioned2021-08-27T09:32:07Z-
dc.date.available2021-08-27T09:32:07Z-
dc.date.created2021-04-22-
dc.date.issued2021-05-11-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/3668-
dc.publisherIEEE-
dc.titleA Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks-
dc.title.alternativeA Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks-
dc.typeConference-
dc.contributor.affiliatedAuthorLee, Wonjun-
dc.identifier.bibliographicCitationIEEE International Conference on Computer Communications (IEEE INFOCOM'2021) - Poster Session-
dc.relation.isPartOfIEEE International Conference on Computer Communications (IEEE INFOCOM'2021) - Poster Session-
dc.relation.isPartOfProceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM'2021)-
dc.citation.titleIEEE International Conference on Computer Communications (IEEE INFOCOM'2021) - Poster Session-
dc.citation.conferencePlaceCN-
dc.citation.conferenceDate2021-05-10-
dc.type.rimsCONF-
dc.description.journalClass1-
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Cyber Security > Department of Information Security > 2. Conference Papers

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Won jun photo

Lee, Won jun
Department of Information Security
Read more

Altmetrics

Total Views & Downloads

BROWSE