Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

PEPSI++: Fast and Lightweight Network for Image Inpainting

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Y.-G.-
dc.contributor.authorSagong, M.-C.-
dc.contributor.authorYeo, Y.-J.-
dc.contributor.authorKim, S.-W.-
dc.contributor.authorKo, S.-J.-
dc.date.accessioned2021-08-30T02:19:04Z-
dc.date.available2021-08-30T02:19:04Z-
dc.date.created2021-06-17-
dc.date.issued2021-01-
dc.identifier.issn2162-237X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/49393-
dc.description.abstractAmong the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, due to two stacked generative networks, the coarse-to-fine network needs numerous computational resources, such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called parallel extended-decoder path for semantic inpainting (PEPSI) network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers that employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e., the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs, such as computational time and the number of network parameters. © 2012 IEEE.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subjectConvolution-
dc.subjectCost reduction-
dc.subjectDecoding-
dc.subjectEncoding (symbols)-
dc.subjectImage enhancement-
dc.subjectNetwork architecture-
dc.subjectSemantics-
dc.subjectSignal to noise ratio-
dc.subjectAdversarial networks-
dc.subjectComputational resources-
dc.subjectComputational time-
dc.subjectContextual information-
dc.subjectLow hardware costs-
dc.subjectNetwork parameters-
dc.subjectPeak signal to noise ratio-
dc.subjectStructural similarity-
dc.subjectNetwork coding-
dc.titlePEPSI++: Fast and Lightweight Network for Image Inpainting-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, S.-J.-
dc.identifier.doi10.1109/TNNLS.2020.2978501-
dc.identifier.scopusid2-s2.0-85099202814-
dc.identifier.wosid000641162100021-
dc.identifier.bibliographicCitationIEEE Transactions on Neural Networks and Learning Systems, v.32, no.1, pp.252 - 265-
dc.relation.isPartOfIEEE Transactions on Neural Networks and Learning Systems-
dc.citation.titleIEEE Transactions on Neural Networks and Learning Systems-
dc.citation.volume32-
dc.citation.number1-
dc.citation.startPage252-
dc.citation.endPage265-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Hardware & Architecture-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusConvolution-
dc.subject.keywordPlusCost reduction-
dc.subject.keywordPlusDecoding-
dc.subject.keywordPlusEncoding (symbols)-
dc.subject.keywordPlusImage enhancement-
dc.subject.keywordPlusNetwork architecture-
dc.subject.keywordPlusSemantics-
dc.subject.keywordPlusSignal to noise ratio-
dc.subject.keywordPlusAdversarial networks-
dc.subject.keywordPlusComputational resources-
dc.subject.keywordPlusComputational time-
dc.subject.keywordPlusContextual information-
dc.subject.keywordPlusLow hardware costs-
dc.subject.keywordPlusNetwork parameters-
dc.subject.keywordPlusPeak signal to noise ratio-
dc.subject.keywordPlusStructural similarity-
dc.subject.keywordPlusNetwork coding-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorgenerative adversarial network (GAN)-
dc.subject.keywordAuthorimage inpainting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE