Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries

Authors
Joshi, BhavanaSamuel, EdmundKim, Yong-ilPeriyasami, GovindasamiRahaman, MostafizurYoon, Sam S.
Issue Date
20-3월-2021
Publisher
JOURNAL MATER SCI TECHNOL
Keywords
Carbon nanofiber; Nanostructure; Composite anode; Zeolitic imidazolate framework
Citation
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, v.67, pp.116 - 126
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume
67
Start Page
116
End Page
126
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/49462
DOI
10.1016/j.jmst.2020.06.028
ISSN
1005-0302
Abstract
Freestanding carbon nanofibers loaded with bimetallic hollow nanocage structures were synthesized. The nanocages inherited the rhombic dodecahedral morphology of the zeolitic imidazolate framework (ZIF) precursors, ZIF-8 and ZIF-67. As anode materials for lithium-ion batteries (LIBs), the bimetallic nanocage-loaded freestanding carbon nanofibers effectively buffered volume expansions and alleviated pulverization through their different reduction and oxidation potentials. The higher capacities of the composite anodes arose via the formation of the LixZn alloy and Li2O by Zn and Co ions, respectively, and the enhanced conductivity conferred by the carbon nanofibers. A synergistic effect of the composite components toward the strong electrochemical performance (688 mA h.g(-1) at 1200 mA.g(-1)) of the bimetallic nanocage-loaded fibers was demonstrated through the superior long-term stability of the anode (1048 mA h.g(-1) after 300 cycles at 100 mA.g(-1)), suggesting that the fabricated anode can be a promising material for use in portable LIBs. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE