Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Potassium-ion storage mechanism of MoS2-WS2-C microspheres and their excellent electrochemical properties

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Jae Hun-
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-08-30T02:49:17Z-
dc.date.available2021-08-30T02:49:17Z-
dc.date.created2021-06-18-
dc.date.issued2021-03-15-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/49468-
dc.description.abstractPotassium-ion batteries are receiving increasing interest as a new type of secondary batteries because of their low redox potentials. In particular, two-dimensional transition metal dichalcogenides are being widely studied because they possess a layered structure with a large interlayer distance; these structural characteristics are favorable for hosting potassium-ions. However, capacity decay occurs and the intercalation of potassium-ions is hindered due to the huge volume expansion during the cycling process. Here, MoS2-WS2-C microspheres containing highly porous structure and heterogeneous interfaces are synthesized through facile spray pyrolysis. Benefiting from the unique structure and hetero-interfaces, the composite microspheres exhibit stable cycle performance and an outstanding rate performance. Meanwhile, a reversible capacity of 350 mA h g(-1) is achieved after 100 cycles at the current density of 100 mA g(-1), and even at the high current density of 5.0 A g(-1), it maintains a capacity of 176 mA h g(-1). The potassium-ion storage mechanism of MoS2-WS2-C microspheres is also systematically explored via ex-situ transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). With the advantages of highly reversible intercalation from WS2 and high specific capacity of conversion from MoS2, the MoS2-WS2-C microspheres achieve high rate performance and specific capacity.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectANODE MATERIALS-
dc.subjectDOPED CARBON-
dc.subjectPERFORMANCE-
dc.subjectMOS2-
dc.subjectCOMPOSITE-
dc.subjectNANOCAPSULES-
dc.subjectFABRICATION-
dc.subjectBATTERIES-
dc.subjectDESIGN-
dc.subjectLAYERS-
dc.titlePotassium-ion storage mechanism of MoS2-WS2-C microspheres and their excellent electrochemical properties-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.cej.2020.127278-
dc.identifier.scopusid2-s2.0-85092518238-
dc.identifier.wosid000613253500001-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.408-
dc.relation.isPartOfCHEMICAL ENGINEERING JOURNAL-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume408-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusDOPED CARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusNANOCAPSULES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordAuthorSpray pyrolysis-
dc.subject.keywordAuthorTransition metal dichalcogenide-
dc.subject.keywordAuthorMolybdenum sulfide-
dc.subject.keywordAuthorTungsten sulfide-
dc.subject.keywordAuthorPotassium-ion batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE