Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Soon Jin-
dc.contributor.authorPark, Kiho-
dc.contributor.authorKim, Dal Yong-
dc.contributor.authorZhan, Min-
dc.contributor.authorHong, Seungkwan-
dc.contributor.authorLee, Jung-Hyun-
dc.date.accessioned2021-08-30T03:03:47Z-
dc.date.available2021-08-30T03:03:47Z-
dc.date.created2021-06-18-
dc.date.issued2021-02-01-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/49620-
dc.description.abstractA high-performance and durable thin-film composite (TFC) pressure retarded osmosis (PRO) membrane was fabricated using a polyvinyl alcohol (PVA)-coated polyethylene (PAPE) support via toluene-assisted interfacial polymerization (TIP). The PVA coating uniformly hydrophilized the extremely thin (similar to 8 mu m) polyethylene (PE) support with a highly porous structure while marginally deforming the support structure, resulting in a very low structural parameter (similar to 235 mu m). The TIP process produced a polyamide selective layer with remarkably higher water permeability (similar to 8.78 L m(-2) h(-1) bar(-1)) than those of commercial HTI membranes (0.56-1.40 L m(-2) h(-1) bar(-1)). Furthermore, despite its extreme thinness, the PAPE-supported TFC (PAPE-TFC) membrane had higher mechanical properties than the commercial membranes owing to the superior mechanical strength of its PE support. Hence, the PAPE-TFC membrane achieved an unprecedentedly high power density of similar to 35.7 W m(-2) at an applied pressure of 20 bar using a deionized water feed solution and a 1.0 M NaCl draw solution, which significantly outperformed commercial and any other reported lab-made PRO membranes. The mechanically robust PAPE-TFC membrane also enabled stable long-term PRO operation under high pressure conditions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectTHIN-FILM-COMPOSITE-
dc.subjectHOLLOW-FIBER MEMBRANES-
dc.subjectOSMOTIC POWER-
dc.subjectREVERSE-OSMOSIS-
dc.subjectSALINITY GRADIENTS-
dc.subjectCELLULOSE-ACETATE-
dc.subjectSEAWATER BRINE-
dc.subjectENERGY-
dc.subjectGENERATION-
dc.subjectPOLYMER-
dc.titleHigh-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Seungkwan-
dc.contributor.affiliatedAuthorLee, Jung-Hyun-
dc.identifier.doi10.1016/j.memsci.2020.118796-
dc.identifier.scopusid2-s2.0-85092511139-
dc.identifier.wosid000600298900007-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.619-
dc.relation.isPartOfJOURNAL OF MEMBRANE SCIENCE-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume619-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusTHIN-FILM-COMPOSITE-
dc.subject.keywordPlusHOLLOW-FIBER MEMBRANES-
dc.subject.keywordPlusOSMOTIC POWER-
dc.subject.keywordPlusREVERSE-OSMOSIS-
dc.subject.keywordPlusSALINITY GRADIENTS-
dc.subject.keywordPlusCELLULOSE-ACETATE-
dc.subject.keywordPlusSEAWATER BRINE-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordAuthorPressure retarded osmosis-
dc.subject.keywordAuthorInterfacial polymerization-
dc.subject.keywordAuthorThin-film composite membrane-
dc.subject.keywordAuthorPolyvinyl alcohol-
dc.subject.keywordAuthorPolyethylene-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Seung kwan photo

Hong, Seung kwan
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE