Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked DNAJC6 mutations

Full metadata record
DC Field Value Language
dc.contributor.authorWulansari, Noviana-
dc.contributor.authorDarsono, Wahyu Handoko Wibowo-
dc.contributor.authorWoo, Hye-Ji-
dc.contributor.authorChang, Mi-Yoon-
dc.contributor.authorKim, Jinil-
dc.contributor.authorBae, Eun-Jin-
dc.contributor.authorSun, Woong-
dc.contributor.authorLee, Ju-Hyun-
dc.contributor.authorCho, Il-Joo-
dc.contributor.authorShin, Hyogeun-
dc.contributor.authorLee, Seung-Jae-
dc.contributor.authorLee, Sang-Hun-
dc.date.accessioned2021-08-30T03:31:40Z-
dc.date.available2021-08-30T03:31:40Z-
dc.date.created2021-06-18-
dc.date.issued2021-02-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/49692-
dc.description.abstractLoss-of-function mutations of DNAJC6, encoding HSP40 auxilin, have recently been identified in patients with early-onset Parkinson's disease (PD). To study the roles of DNAJC6 in PD pathogenesis, we used human embryonic stem cells with CRISPR-Cas9-mediated gene editing. Here, we show that DNAJC6 mutations cause key PD pathologic features, i.e., midbrain-type dopamine (mDA) neuron degeneration, pathologic alpha-synuclein aggregation, increase of intrinsic neuronal firing frequency, and mitochondrial and lysosomal dysfunctions in human midbrain-like organoids (hMLOs). In addition, neurodevelopmental defects were also manifested in hMLOs carrying the mutations. Transcriptomic analyses followed by experimental validation revealed that defects in DNAJC6-mediated endocytosis impair the WNT-LMX1A signal during the mDA neuron development. Furthermore, reduced LMX1A expression during development caused the generation of vulnerable mDA neurons with the pathologic manifestations. These results suggest that the human model of DNAJC6-PD recapitulates disease phenotypes and reveals mechanisms underlying disease pathology, providing a platform for assessing therapeutic interventions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleNeurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked DNAJC6 mutations-
dc.typeArticle-
dc.contributor.affiliatedAuthorSun, Woong-
dc.identifier.doi10.1126/sciadv.abb1540-
dc.identifier.scopusid2-s2.0-85101415683-
dc.identifier.wosid000620146100001-
dc.identifier.bibliographicCitationSCIENCE ADVANCES, v.7, no.8-
dc.relation.isPartOfSCIENCE ADVANCES-
dc.citation.titleSCIENCE ADVANCES-
dc.citation.volume7-
dc.citation.number8-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Woong photo

Sun, Woong
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE