Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Amorphous Cobalt Selenite Nanoparticles Decorated on a Graphitic Carbon Hollow Shell for High-Rate and Ultralong Cycle Life Lithium-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-08-30T05:45:02Z-
dc.date.available2021-08-30T05:45:02Z-
dc.date.created2021-06-18-
dc.date.issued2020-12-07-
dc.identifier.issn2168-0485-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/50836-
dc.description.abstractTransition metal compounds with complex compositions forming heterointerfaces during cycling are under development on account of their excellent electrochemical properties. Herein, a new synthesis strategy is successfully developed for uniquely structured hollow carbon nanospheres comprising amorphous CoSeOx nanoparticles. A drop-and-dry infiltration method is applied to synthesize metal salt-infiltrated hollow carbon nanospheres, which are then posttreated with a metalloid Se under inert conditions to form CoSe2-C hollow nanospheres. Partial oxidation of these nanospheres under a 350 degrees C air atmosphere produces amorphous CoSeOx-C hollow nanospheres. The synthesis of amorphous metal selenite using conductive carbon is being reported here for the first time. Moreover, the conversion mechanism of amorphous CoSeOx is studied systemically via ex situ X-ray photoelectron spectroscopy, transmission electron microscopy, and electrochemical analyses. The amorphous characteristics and heterostructure formation and the graphitic carbon with a good electric conductivity contribute to the good electrochemical kinetic performance and ultrastable cyclic stability of CoSeOx-C. CoSeOx-C shows remarkable long-term cycle performance (799 mA h g(-1) for the 3000th cycle at a high current density of 5.0 A g(-1)) as well as remarkable rate capability (691 mA h g(-1)) even at 30 A g(-1).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSUPERIOR ELECTROCHEMICAL PROPERTIES-
dc.subjectTRANSITION-METAL OXIDES-
dc.subjectANODE MATERIAL-
dc.subjectPOROUS CARBON-
dc.subjectHIGH-CAPACITY-
dc.subjectCOMPOSITE-
dc.subjectPERFORMANCE-
dc.subjectMICROSPHERES-
dc.subjectNANOSPHERES-
dc.subjectNANOFIBERS-
dc.titleAmorphous Cobalt Selenite Nanoparticles Decorated on a Graphitic Carbon Hollow Shell for High-Rate and Ultralong Cycle Life Lithium-Ion Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1021/acssuschemeng.0c05658-
dc.identifier.scopusid2-s2.0-85097885138-
dc.identifier.wosid000599195300011-
dc.identifier.bibliographicCitationACS SUSTAINABLE CHEMISTRY & ENGINEERING, v.8, no.48, pp.17707 - 17717-
dc.relation.isPartOfACS SUSTAINABLE CHEMISTRY & ENGINEERING-
dc.citation.titleACS SUSTAINABLE CHEMISTRY & ENGINEERING-
dc.citation.volume8-
dc.citation.number48-
dc.citation.startPage17707-
dc.citation.endPage17717-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusSUPERIOR ELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusTRANSITION-METAL OXIDES-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusPOROUS CARBON-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordAuthormetal selenite-
dc.subject.keywordAuthorgraphitic carbon-
dc.subject.keywordAuthorconversion mechanism-
dc.subject.keywordAuthoramorphous material-
dc.subject.keywordAuthorlithium-ion battery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE