Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space

Full metadata record
DC Field Value Language
dc.contributor.authorYang, Junxiang-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-08-30T06:10:17Z-
dc.date.available2021-08-30T06:10:17Z-
dc.date.created2021-06-18-
dc.date.issued2020-12-01-
dc.identifier.issn0045-7825-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/50874-
dc.description.abstractHerein, we present a phase-field model and its efficient numerical method for incompressible single and binary fluid flows on arbitrarily curved surfaces in a three-dimensional (3D) space. An incompressible single fluid flow is governed by the Navier-Stokes (NS) equation and the binary fluid flow is governed by the two-phase Navier-Stokes-Cahn-Hilliard (NSCH) system. In the proposed method, we use a narrow band domain to embed the arbitrarily curved surface and extend the NSCH system and apply a pseudo-Neumann boundary condition that enforces constancy of the dependent variables along the normal direction of the points on the surface. Therefore, we can use the standard discrete Laplace operator instead of the discrete Laplace-Beltrami operator. Within the narrow band domain, the Chorin's projection method is applied to solve the NS equation, and a convex splitting method is employed to solve the Cahn-Hilliard equation with an advection term. To keep the velocity field tangential to the surface, a velocity correction procedure is applied. An effective mass correction step is adopted to preserve the phase concentration. Computational results such as convergence test, Kevin-Helmholtz instability, and Rayleigh-Taylor instability on curved surfaces demonstrate the accuracy and efficiency of the proposed method. (c) 2020 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectDIFFUSE INTERFACE MODEL-
dc.subjectNAVIER-STOKES EQUATIONS-
dc.subjectCAHN-HILLIARD EQUATION-
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subjectMONOLITHIC PROJECTION METHOD-
dc.subjectSTABLE FINITE-DIFFERENCE-
dc.subjectMOVING CONTACT LINE-
dc.subjectCRYSTAL EQUATION-
dc.subjectSIMULATION-
dc.subjectSCHEMES-
dc.titleA phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.cma.2020.113382-
dc.identifier.scopusid2-s2.0-85089899752-
dc.identifier.wosid000593763300012-
dc.identifier.bibliographicCitationCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.372-
dc.relation.isPartOfCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.citation.titleCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.citation.volume372-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusMONOLITHIC PROJECTION METHOD-
dc.subject.keywordPlusSTABLE FINITE-DIFFERENCE-
dc.subject.keywordPlusMOVING CONTACT LINE-
dc.subject.keywordPlusCRYSTAL EQUATION-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusSCHEMES-
dc.subject.keywordPlusDIFFUSE INTERFACE MODEL-
dc.subject.keywordPlusNAVIER-STOKES EQUATIONS-
dc.subject.keywordPlusCAHN-HILLIARD EQUATION-
dc.subject.keywordPlusPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subject.keywordAuthorTwo-phase fluid flow-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorKevin-Helmholtz instability-
dc.subject.keywordAuthorRayleigh-Taylor instability-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE