Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

A facile control in free-carbon domain with divinylbenzene for the high-rate-performing Sb/SiOCcomposite anode material in sodium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Dowon-
dc.contributor.authorKim, Hyeongwoo-
dc.contributor.authorLim, Hyojun-
dc.contributor.authorKim, Ki Jae-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorByun, Dongjin-
dc.contributor.authorKim, Changsam-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2021-08-30T09:38:01Z-
dc.date.available2021-08-30T09:38:01Z-
dc.date.created2021-06-19-
dc.date.issued2020-11-
dc.identifier.issn0363-907X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/51934-
dc.description.abstractSodium-ion batteries (SIBs) are not only cheaper to produce than lithium-ion batteries, but the reserves of sodium in the world are also more uniform and abundant. Thus, efforts are being made to utilize sodium-ion batteries as next-generation large-capacity energy-storage devices. Sb-based anode materials have emerged as a popular alloying material for SIB owing to their high theoretical capacity. However, Sb exhibits the problem of capacity fading owing to excessive volume expansion (approximately 390%). SiOC is a buffer material that has been investigated in terms of its ability to overcome these disadvantages; however, SiOC has the disadvantage of containing a fixed and limited free-carbon domain. Here, high free-carbon contained in Sb/SiOC composites (HFC-Sb/SiOC) was easily synthesized by the heat treatment of divinylbenzene (DVB), a liquid carbon source, with silicone oil and Sb acetate. Sb nanoparticles were uniformly embedded in DVB-modified SiOC with increased free-carbon domains. This composite material showed cycling stability (344.5 mAh g(-1)after the 150 cycles at 0.2 C) and outstanding rate properties (197.5 mAh g(-1)at 5 C) as the SIB anode. The enhanced electrochemical performance is result from the increased free-carbon domains in the SiOC matrix caused by the addition of DVB, which makes the characteristics of the SiOC material softer and more elastic, suppressing volume changes and enhancing the electrical conductivity.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectGRAPHENE OXIDE COMPOSITE-
dc.subjectLI-ION-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectSB NANOPARTICLES-
dc.subjectMORPHOLOGICAL EVOLUTION-
dc.subjectNEGATIVE ELECTRODES-
dc.subjectCATHODE MATERIALS-
dc.subjectNANOPOROUS SB/C-
dc.subjectSILICONE OIL-
dc.subjectLONG-CYCLE-
dc.titleA facile control in free-carbon domain with divinylbenzene for the high-rate-performing Sb/SiOCcomposite anode material in sodium-ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorByun, Dongjin-
dc.identifier.doi10.1002/er.5769-
dc.identifier.scopusid2-s2.0-85089369514-
dc.identifier.wosid000558920700001-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.44, no.14, pp.11473 - 11486-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF ENERGY RESEARCH-
dc.citation.titleINTERNATIONAL JOURNAL OF ENERGY RESEARCH-
dc.citation.volume44-
dc.citation.number14-
dc.citation.startPage11473-
dc.citation.endPage11486-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaNuclear Science & Technology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNuclear Science & Technology-
dc.subject.keywordPlusGRAPHENE OXIDE COMPOSITE-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusSB NANOPARTICLES-
dc.subject.keywordPlusMORPHOLOGICAL EVOLUTION-
dc.subject.keywordPlusNEGATIVE ELECTRODES-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusNANOPOROUS SB/C-
dc.subject.keywordPlusSILICONE OIL-
dc.subject.keywordPlusLONG-CYCLE-
dc.subject.keywordAuthoranode materials-
dc.subject.keywordAuthorantimony-
dc.subject.keywordAuthordivinylbenzene-
dc.subject.keywordAuthorsilicon oxycarbide-
dc.subject.keywordAuthorsodium-ion batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher BYUN, Dong Jin photo

BYUN, Dong Jin
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE