Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields

Full metadata record
DC Field Value Language
dc.contributor.authorSauceda, Huziel E.-
dc.contributor.authorGastegger, Michael-
dc.contributor.authorChmiela, Stefan-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorTkatchenko, Alexandre-
dc.date.accessioned2021-08-30T13:58:00Z-
dc.date.available2021-08-30T13:58:00Z-
dc.date.created2021-06-18-
dc.date.issued2020-09-28-
dc.identifier.issn0021-9606-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/53103-
dc.description.abstractModern machine learning force fields (ML-FF) are able to yield energy and force predictions at the accuracy of high-level ab initio methods, but at a much lower computational cost. On the other hand, classical molecular mechanics force fields (MM-FF) employ fixed functional forms and tend to be less accurate, but considerably faster and transferable between molecules of the same class. In this work, we investigate how both approaches can complement each other. We contrast the ability of ML-FF for reconstructing dynamic and thermodynamic observables to MM-FFs in order to gain a qualitative understanding of the differences between the two approaches. This analysis enables us to modify the generalized AMBER force field by reparametrizing short-range and bonded interactions with more expressive terms to make them more accurate, without sacrificing the key properties that make MM-FFs so successful.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subjectPOTENTIAL FUNCTIONS-
dc.subjectMODEL CHEMISTRY-
dc.subjectENERGY-
dc.subjectDYNAMICS-
dc.subjectPROGRAM-
dc.subjectAMBER-
dc.subjectAPPROXIMATION-
dc.subjectSIMULATIONS-
dc.subjectACCURATE-
dc.subjectPROTEIN-
dc.titleMolecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1063/5.0023005-
dc.identifier.scopusid2-s2.0-85092055441-
dc.identifier.wosid000576382700002-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.153, no.12-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume153-
dc.citation.number12-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusPOTENTIAL FUNCTIONS-
dc.subject.keywordPlusMODEL CHEMISTRY-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusPROGRAM-
dc.subject.keywordPlusAMBER-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusACCURATE-
dc.subject.keywordPlusPROTEIN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE