Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Spatially-Constrained Fisher Representation for Brain Disease Identification With Incomplete Multi-Modal Neuroimages

Full metadata record
DC Field Value Language
dc.contributor.authorPan, Yongsheng-
dc.contributor.authorLiu, Mingxia-
dc.contributor.authorLian, Chunfeng-
dc.contributor.authorXia, Yong-
dc.contributor.authorShen, Dinggang-
dc.date.accessioned2021-08-30T16:03:28Z-
dc.date.available2021-08-30T16:03:28Z-
dc.date.created2021-06-18-
dc.date.issued2020-09-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/53664-
dc.description.abstractMulti-modal neuroimages, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), can provide complementary structural and functional information of the brain, thus facilitating automated brain disease identification. Incomplete data problem is unavoidable in multi-modal neuroimage studies due to patient dropouts and/or poor data quality. Conventional methods usually discard data-missing subjects, thus significantly reducing the number of training samples. Even though several deep learning methods have been proposed, they usually rely on pre-defined regions-of-interest in neuroimages, requiring disease-specific expert knowledge. To this end, we propose a spatially-constrained Fisher representation framework for brain disease diagnosis with incomplete multi-modal neuroimages. We first impute missing PET images based on their corresponding MRI scans using a hybrid generative adversarial network. With the complete (after imputation) MRI and PET data, we then develop a spatially-constrained Fisher representation network to extract statistical descriptors of neuroimages for disease diagnosis, assuming that these descriptors follow a Gaussian mixture model with a strong spatial constraint (i.e., images from different subjects have similar anatomical structures). Experimental results on three databases suggest that our method can synthesize reasonable neuroimages and achieve promising results in brain disease identification, compared with several state-of-the-art methods.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectVOXEL-BASED MORPHOMETRY-
dc.subjectALZHEIMERS-DISEASE-
dc.subjectMISSING DATA-
dc.subjectHIPPOCAMPUS-
dc.subjectCLASSIFICATION-
dc.subjectBIOMARKERS-
dc.subjectIMPUTATION-
dc.subjectDIAGNOSIS-
dc.subjectDEMENTIA-
dc.subjectAMYGDALA-
dc.titleSpatially-Constrained Fisher Representation for Brain Disease Identification With Incomplete Multi-Modal Neuroimages-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1109/TMI.2020.2983085-
dc.identifier.wosid000566339800022-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MEDICAL IMAGING, v.39, no.9, pp.2965 - 2975-
dc.relation.isPartOfIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.titleIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.volume39-
dc.citation.number9-
dc.citation.startPage2965-
dc.citation.endPage2975-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusVOXEL-BASED MORPHOMETRY-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusMISSING DATA-
dc.subject.keywordPlusHIPPOCAMPUS-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordPlusIMPUTATION-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusDEMENTIA-
dc.subject.keywordPlusAMYGDALA-
dc.subject.keywordAuthorMagnetic resonance imaging-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorDiseases-
dc.subject.keywordAuthorPositron emission tomography-
dc.subject.keywordAuthorMedical diagnosis-
dc.subject.keywordAuthorBrain modeling-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorMulti-modal neuroimage-
dc.subject.keywordAuthorincomplete data-
dc.subject.keywordAuthorgenerative adversarial network-
dc.subject.keywordAuthorfisher vector-
dc.subject.keywordAuthorbrain disease diagnosis-
dc.subject.keywordAuthorMRI-
dc.subject.keywordAuthorPET-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE