Weighted L-q(L-p)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Han, Beom-Seok | - |
dc.contributor.author | Kim, Kyeong-Hun | - |
dc.contributor.author | Park, Daehan | - |
dc.date.accessioned | 2021-08-30T17:33:30Z | - |
dc.date.available | 2021-08-30T17:33:30Z | - |
dc.date.created | 2021-06-18 | - |
dc.date.issued | 2020-08-05 | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/53796 | - |
dc.description.abstract | We present a weighted L-q(L-p)-theory (p, q is an element of (1, infinity)) with Muckenhoupt weights for the equation partial derivative(alpha)(t)u(t, x) = Delta u(t, x) + f(t, x), t > 0, x is an element of R-d. Here, alpha is an element of (0, 2) and partial derivative(alpha)(t) is the Caputo fractional derivative of order alpha. In particular we prove that for any p, q is an element of (1, infinity), w(1) (X) is an element of A(p) and w(2) (t) is an element of A(q), integral(infinity)(0)(integral(Rd) vertical bar u(xx)vertical bar(p) w(1)dx)(q/p) w(2)dt <= N integral(infinity)(0)(integral(Rd) vertical bar f vertical bar(p) w(1)dx)(q/p) w(2)dt, where A(p) is the class of Muckenhoupt A(p) weights. Our approach is based on the sharp function estimates of the derivatives of solutions. (C) 2020 Elsevier Inc. All rights reserved. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.subject | L-P | - |
dc.subject | ANOMALOUS DIFFUSION | - |
dc.subject | PARABOLIC EQUATIONS | - |
dc.subject | REGULARITY | - |
dc.title | Weighted L-q(L-p)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Kim, Kyeong-Hun | - |
dc.identifier.doi | 10.1016/j.jde.2020.03.005 | - |
dc.identifier.scopusid | 2-s2.0-85081203229 | - |
dc.identifier.wosid | 000534488300025 | - |
dc.identifier.bibliographicCitation | JOURNAL OF DIFFERENTIAL EQUATIONS, v.269, no.4, pp.3515 - 3550 | - |
dc.relation.isPartOf | JOURNAL OF DIFFERENTIAL EQUATIONS | - |
dc.citation.title | JOURNAL OF DIFFERENTIAL EQUATIONS | - |
dc.citation.volume | 269 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 3515 | - |
dc.citation.endPage | 3550 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematics | - |
dc.subject.keywordPlus | L-P | - |
dc.subject.keywordPlus | ANOMALOUS DIFFUSION | - |
dc.subject.keywordPlus | PARABOLIC EQUATIONS | - |
dc.subject.keywordPlus | REGULARITY | - |
dc.subject.keywordAuthor | Fractional diffusion-wave equation | - |
dc.subject.keywordAuthor | L-q(L-p)-theory | - |
dc.subject.keywordAuthor | Muckenhoupt A(p) weights | - |
dc.subject.keywordAuthor | Caputo fractional derivative | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.