Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Weighted L-q(L-p)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Beom-Seok-
dc.contributor.authorKim, Kyeong-Hun-
dc.contributor.authorPark, Daehan-
dc.date.accessioned2021-08-30T17:33:30Z-
dc.date.available2021-08-30T17:33:30Z-
dc.date.created2021-06-18-
dc.date.issued2020-08-05-
dc.identifier.issn0022-0396-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/53796-
dc.description.abstractWe present a weighted L-q(L-p)-theory (p, q is an element of (1, infinity)) with Muckenhoupt weights for the equation partial derivative(alpha)(t)u(t, x) = Delta u(t, x) + f(t, x), t > 0, x is an element of R-d. Here, alpha is an element of (0, 2) and partial derivative(alpha)(t) is the Caputo fractional derivative of order alpha. In particular we prove that for any p, q is an element of (1, infinity), w(1) (X) is an element of A(p) and w(2) (t) is an element of A(q), integral(infinity)(0)(integral(Rd) vertical bar u(xx)vertical bar(p) w(1)dx)(q/p) w(2)dt <= N integral(infinity)(0)(integral(Rd) vertical bar f vertical bar(p) w(1)dx)(q/p) w(2)dt, where A(p) is the class of Muckenhoupt A(p) weights. Our approach is based on the sharp function estimates of the derivatives of solutions. (C) 2020 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectL-P-
dc.subjectANOMALOUS DIFFUSION-
dc.subjectPARABOLIC EQUATIONS-
dc.subjectREGULARITY-
dc.titleWeighted L-q(L-p)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Kyeong-Hun-
dc.identifier.doi10.1016/j.jde.2020.03.005-
dc.identifier.scopusid2-s2.0-85081203229-
dc.identifier.wosid000534488300025-
dc.identifier.bibliographicCitationJOURNAL OF DIFFERENTIAL EQUATIONS, v.269, no.4, pp.3515 - 3550-
dc.relation.isPartOfJOURNAL OF DIFFERENTIAL EQUATIONS-
dc.citation.titleJOURNAL OF DIFFERENTIAL EQUATIONS-
dc.citation.volume269-
dc.citation.number4-
dc.citation.startPage3515-
dc.citation.endPage3550-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusL-P-
dc.subject.keywordPlusANOMALOUS DIFFUSION-
dc.subject.keywordPlusPARABOLIC EQUATIONS-
dc.subject.keywordPlusREGULARITY-
dc.subject.keywordAuthorFractional diffusion-wave equation-
dc.subject.keywordAuthorL-q(L-p)-theory-
dc.subject.keywordAuthorMuckenhoupt A(p) weights-
dc.subject.keywordAuthorCaputo fractional derivative-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kyeong Hun photo

Kim, Kyeong Hun
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE