Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance, Solution-Processable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Realized via the Adjustment of the Composition of the Organoboron Acceptor Monomer in Copolymer Host Materials

Authors
Godumala, MalleshamHwang, JinhyoKang, HyunchulJeong, Ji-EunHarit, Amit KumarCho, Min JuWoo, Han YoungPark, SungnamChoi, Dong Hoon
Issue Date
5-8월-2020
Publisher
AMER CHEMICAL SOC
Keywords
dioxa-13b-boranaphtho[3,2,1-de]anthracene; D-sigma-A-type copolymers; bipolar hosts; thermally activated delayed fluorescence OLEDs; solution process; breakthrough efficiency
Citation
ACS APPLIED MATERIALS & INTERFACES, v.12, no.31, pp.35300 - 35310
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
12
Number
31
Start Page
35300
End Page
35310
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/53804
DOI
10.1021/acsami.0c10293
ISSN
1944-8244
Abstract
Organic polymers that exhibit features pertinent to functioning as host materials for thermally activated delayed fluorescence (TADF) emitters have considerable potential in solution-processable organic light-emitting diodes (OLEDs), allowing simple, low-cost, and large-area applications. In particular, polymer hosts have superior characteristics, including facile functionality to introduce various electron donor and acceptor entities, the ability to uniformly disperse and contain small molecular dopants, and the ability to produce more smooth and homogeneous films, compared to those of their small-molecule counterparts. This manuscript describes the design and development of three new styrene-based copolymers (ABP91, ABP73, and ABP55) bearing diphenylacridine as the electron donor and 2, 12-d i-tert-butyl-7-phenyl-S,9-dioxa-13b-baranaphtho [3,2,1-de] anthracene as the electron acceptor. In particular, ABP91, ABP73, and ABP55 were synthesized via variations in the ratio of donor to acceptor monomers to substantiate their influence in OLED applications. With the ability of the styrene backbone of interrupting the direct electronic coupling between the adjacent electron donor and acceptor entities through non-conjugated linkages, high triplet energy can be inherited by the resulting polymers (>2.70 eV). Furthermore, these materials manifest thermal robustness through high decomposition temperatures (between 348 and 366 degrees C) and high glass transition temperatures (between 234 and 277 degrees C). Consequently, solution-processable OLEDs fabricated using the newly synthesized copolymers as host materials and the familiar t4CzIPN as a green-emissive TADF dopant deliver state-of-the-art performance with maximum external quantum efficiencies of 21.8, 22.2, and 19.7% for ABP91, ABP73, and ABP55, respectively. To our knowledge, this is, to date, the best performance reported when organic polymers are used as host materials in solution-processable TADF OLEDs. The pragmatic outcomes obtained in this study can provide useful insights into the structure-property relationship to the OLED community for the further development of efficient polymer hosts for use in solution-processable TADF OLEDs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOI, DONG HOON photo

CHOI, DONG HOON
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE