Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis

Authors
Lee, Ki-SunLee, Won-ChangKim, Pan-GyuPark, Ji-ManKoo, Ki-TaeRyu, Jae-JunShin, Sang-Wan
Issue Date
6월-2020
Publisher
MDPI
Keywords
root analogue implant; initial stability; finite element analysis
Citation
APPLIED SCIENCES-BASEL, v.10, no.12
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
10
Number
12
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/55430
DOI
10.3390/app10124104
ISSN
2076-3417
Abstract
Background: The aim of this study was to biomechanically evaluate the initial stability of a patient-specific root analogue implant (RAI) design with drilling protocol by comparing it to designs without drilling protocol through a 3D finite element analysis (FEA). Methods: A 3D surface model of an RAI for the upper right incisor was constructed. To evaluate the effect of root apex drilling, four modified RAI shapes were designed with the press-fit implantation method: Non-modified, wedge added at root surface, lattice added at root surface, and apex-anchor added at root apex (AA). Each model was subjected to an oblique load of 100 N. To simulate the initial stability of implantation, contact conditions at the implant-bone interface were set to allow for the sliding phenomenon with low friction (frictional coefficient 0.1-0.5). Analysis was performed to evaluate micro-displacements of the implants and peak stress on the surrounding bones. Results: Under all low frictional coefficient conditions, the lowest von Mises stress level on the cortical bone and fewest micro-displacements of the implant were observed in the AA design. Conclusion: In view of these results, the AA design proved superior in reducing the stress concentration on the supporting cortical bone and the micro-displacement of RAI.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ryu, Jae Jun photo

Ryu, Jae Jun
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE