Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Near-field transmission matrix microscopy for mapping high-order eigenmodes of subwavelength nanostructures

Authors
Seo, EunsungJin, Young-HoChoi, WonjunJo, YonghyeonLee, SuyeonSong, Kyung-DeokAhn, JoonmoPark, Q-HanKim, Myung-KiChoi, Wonshik
Issue Date
22-5월-2020
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE COMMUNICATIONS, v.11, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
11
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/55646
DOI
10.1038/s41467-020-16263-z
ISSN
2041-1723
Abstract
As nanoscale photonic devices are densely integrated, multiple near-field optical eigenmodes take part in their functionalization. Inevitably, these eigenmodes are highly multiplexed in their spectra and superposed in their spatial distributions, making it extremely difficult for conventional near-field scanning optical microscopy (NSOM) to address individual eigenmodes. Here, we develop a near-field transmission matrix microscopy for mapping the high-order eigenmodes of nanostructures, which are invisible with conventional NSOM. At an excitation wavelength where multiple modes are superposed, we measure the near-field amplitude and phase maps for various far-field illumination angles, from which we construct a fully phase-referenced far- to near-field transmission matrix. By performing the singular value decomposition, we extract orthogonal near-field eigenmodes such as anti-symmetric mode and quadruple mode of multiple nano-slits whose gap size (50nm) is smaller than the probe aperture (150nm). Analytic model and numerical mode analysis validated the experimentally observed modes. Nanoscale integrated photonic devices have complicated combinations of optical eigenmodes. Here, the authors develop a far- to near-field transmission matrix microscopy that enables measuring higher-order modes of nanostructures beyond the capabilities of conventional near-field microscopy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Won shik photo

Choi, Won shik
이과대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE