Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Programmable Synapse-Like MoS2 Field-Effect Transistors Phase-Engineered by Dynamic Lithium Ion Modulation

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Hyunik-
dc.contributor.authorKim, Jihyun-
dc.date.accessioned2021-08-31T01:07:08Z-
dc.date.available2021-08-31T01:07:08Z-
dc.date.created2021-06-19-
dc.date.issued2020-05-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/56090-
dc.description.abstractSynaptic transistors, inspired by brain plasticity, have shown strong potential as neuromorphic computing elements. Employing 2D materials for synaptic devices can provide an additional degree-of-freedom for monolithically integrated circuits owing to their atomically thin body and suitable electrical properties. Herein, a programmable molybdenum disulfide (MoS2) field-effect transistor (FET) that emulates synaptic interaction via phase engineering, which is assisted by field-driven ionic modulation, is reported. Li+ ions selectively introduced into the van der Waals gap of the multilayer MoS2 convert the 2H phase (semiconducting) into the 1T' phase (metallic), resulting in a seamless and reversible 1T'/2H heterophase homojunction device. The 1T'-MoS2 region exhibits dynamic resistive switching behavior in a non-volatile fashion with a switching ratio of approximate to 10 owing to the Li+ ion redistribution under the applied electric field. By controlling the Schottky barrier height of the 1T'-MoS2 channel, the behaviors of the monolithically integrated 1T'/2H-MoS2 FET can be programmed with non-volatility. The 1T'/2H-MoS2 heterophase homojunction device shows multilevel current output with a multistate computing window, indicating its potential as a stable multilevel neuro synaptic device. These results could enable the development of highly functional and energy-efficient neuromorphic systems via the monolithic integration of 2D materials.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectEVOLUTION-
dc.subjectMEMORY-
dc.subjectCONTACTS-
dc.subject1T-MOS2-
dc.subjectNEURONS-
dc.titleProgrammable Synapse-Like MoS2 Field-Effect Transistors Phase-Engineered by Dynamic Lithium Ion Modulation-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jihyun-
dc.identifier.doi10.1002/aelm.201901410-
dc.identifier.scopusid2-s2.0-85083060412-
dc.identifier.wosid000533986800005-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.6, no.5-
dc.relation.isPartOfADVANCED ELECTRONIC MATERIALS-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume6-
dc.citation.number5-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusCONTACTS-
dc.subject.keywordPlus1T-MOS2-
dc.subject.keywordPlusNEURONS-
dc.subject.keywordAuthor2D materials-
dc.subject.keywordAuthorfield-effect transistors-
dc.subject.keywordAuthorion intercalation-
dc.subject.keywordAuthorphase engineering-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE