Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI

Full metadata record
DC Field Value Language
dc.contributor.authorLian, Chunfeng-
dc.contributor.authorLiu, Mingxia-
dc.contributor.authorZhang, Jun-
dc.contributor.authorShen, Dinggang-
dc.date.accessioned2021-08-31T04:55:49Z-
dc.date.available2021-08-31T04:55:49Z-
dc.date.created2021-06-18-
dc.date.issued2020-04-
dc.identifier.issn0162-8828-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/56835-
dc.description.abstractStructural magnetic resonance imaging (sMRI) has been widely used for computer-aided diagnosis of neurodegenerative disorders, e.g., Alzheimer's disease (AD), due to its sensitivity to morphological changes caused by brain atrophy. Recently, a few deep learning methods (e.g., convolutional neural networks, CNNs) have been proposed to learn task-oriented features from sMRI for AD diagnosis, and achieved superior performance than the conventional learning-based methods using hand-crafted features. However, these existing CNN-based methods still require the pre-determination of informative locations in sMRI. That is, the stage of discriminative atrophy localization is isolated to the latter stages of feature extraction and classifier construction. In this paper, we propose a hierarchical fully convolutional network (H-FCN) to automatically identify discriminative local patches and regions in the whole brain sMRI, upon which multi-scale feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis. Our proposed H-FCN method was evaluated on a large cohort of subjects from two independent datasets (i.e., ADNI-1 and ADNI-2), demonstrating good performance on joint discriminative atrophy localization and brain disease diagnosis.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE COMPUTER SOC-
dc.subjectVOXEL-BASED MORPHOMETRY-
dc.subjectNEURAL-NETWORK-
dc.subjectCLASSIFICATION-
dc.subjectIMAGES-
dc.subjectSEGMENTATION-
dc.subjectAD-
dc.subjectPATTERNS-
dc.subjectFEATURES-
dc.subjectFUSION-
dc.titleHierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1109/TPAMI.2018.2889096-
dc.identifier.scopusid2-s2.0-85058985521-
dc.identifier.wosid000630206500001-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.42, no.4, pp.880 - 893-
dc.relation.isPartOfIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE-
dc.citation.titleIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE-
dc.citation.volume42-
dc.citation.number4-
dc.citation.startPage880-
dc.citation.endPage893-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusVOXEL-BASED MORPHOMETRY-
dc.subject.keywordPlusNEURAL-NETWORK-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordPlusSEGMENTATION-
dc.subject.keywordPlusAD-
dc.subject.keywordPlusPATTERNS-
dc.subject.keywordPlusFEATURES-
dc.subject.keywordPlusFUSION-
dc.subject.keywordAuthorComputer-aided alzheimer&apos-
dc.subject.keywordAuthors disease diagnosis-
dc.subject.keywordAuthorfully convolutional networks-
dc.subject.keywordAuthordiscriminative atrophy localization-
dc.subject.keywordAuthorweakly-supervised learning-
dc.subject.keywordAuthorstructural MRI-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE