Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fibrous network of highly integrated carbon nanotubes/MoO3 composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Se Hwan-
dc.contributor.authorPark, Seong Mi-
dc.contributor.authorKang, Dong-Won-
dc.contributor.authorKang, Yun Chan-
dc.contributor.authorCho, Jung Sang-
dc.date.accessioned2021-08-31T06:18:42Z-
dc.date.available2021-08-31T06:18:42Z-
dc.date.created2021-06-18-
dc.date.issued2020-03-25-
dc.identifier.issn1226-086X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/57224-
dc.description.abstractFibrous network of highly-integrated CNTs/MoO3 composite bundle in which CNTs anchored with MoO3 nanoplates was prepared by electrospinning process and subsequent simple heat-treatment. By performing the pre-acid-treatments of both CNTs and PAN, dipole-dipole interactions and hydrogen bonding between CNTs and PAN could form MoO2(acac)(2)-PAN-CNTs complex in a solution, which allows for the formation of a stable jet during electrospinning. Notably, by selectively removing PAN in as-spun fibers during heat-treatment, a highly integrated CNTs/MoO3 bundle network anchored with MoO3 nanoplates was obtained. This unique CNTs/MoO3 percolation network makes it possible to achieve a superior lithium ion storage performance by improving electrical conductivity and structure stability. Thus, the unique nanostructure has high discharge capacities of 972 mA h g(-1), after 100 cycles at 1.0 A g(-1) and 905 mA h g(-1) after 800 long-term cycles at 2.0 A g(-1), when applied as anode materials for lithium-ion batteries. The discharge capacities of 980, 920, 819, 742, 599, 484, and 374 mA h g(-1) were observed at current densities of 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, and 10.0 A g(-1), respectively. (C) 2019 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectHIGH-PERFORMANCE-
dc.subjectLI-ION-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectCATHODE MATERIAL-
dc.subjectALPHA-MOO3-
dc.subjectNANOBELTS-
dc.subjectOXIDE-
dc.subjectMICROSPHERES-
dc.subjectSODIUM-
dc.subjectSPHERES-
dc.titleFibrous network of highly integrated carbon nanotubes/MoO3 composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.jiec.2019.12.017-
dc.identifier.scopusid2-s2.0-85077739856-
dc.identifier.wosid000514214400049-
dc.identifier.bibliographicCitationJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, v.83, pp.438 - 448-
dc.relation.isPartOfJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-
dc.citation.titleJOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-
dc.citation.volume83-
dc.citation.startPage438-
dc.citation.endPage448-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002568681-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusALPHA-MOO3-
dc.subject.keywordPlusNANOBELTS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordPlusSODIUM-
dc.subject.keywordPlusSPHERES-
dc.subject.keywordAuthorMoO3-
dc.subject.keywordAuthorCNTs-
dc.subject.keywordAuthorLithium ion batteries-
dc.subject.keywordAuthorAnode materials-
dc.subject.keywordAuthorElectrospinning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE