Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improved Interfacial Crystallization by Synergic Effects of Precursor Solution Stoichiometry and Conjugated Polyelectrolyte Interlayer for High Open-Circuit Voltage of Perovskite Photovoltaic Diodes

Authors
Kim, SohyeonJeong, Ji-EunHong, JungyunLee, KangminLee, Mi JungWoo, Han YoungHwang, Inchan
Issue Date
11-3월-2020
Publisher
AMER CHEMICAL SOC
Keywords
interfacial engineering; crystallization; perovskites; open-circuit voltage; photovoltaics
Citation
ACS APPLIED MATERIALS & INTERFACES, v.12, no.10, pp.12328 - 12336
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
12
Number
10
Start Page
12328
End Page
12336
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/57302
DOI
10.1021/acsami.9b22283
ISSN
1944-8244
Abstract
The open-circuit voltage (V-oc) of perovskite photovoltaic diodes depends largely on the selection of charge transport layers (CTLs) and surface passivation, which makes it important to understand the physical processes occurring at the interface between the perovskite and a CTL. We provide a direct correlation between V-oc and the interfacial characteristics of perovskites tuned through stoichiometry engineering of precursor solutions and surface modification of the underlying poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) layer. Poor quality interfacial perovskite crystals were observed on top of the PEDOT:PSS layer, resulting in strong interfacial recombination and a low V-oc. In contrast, the growth of the interfacial perovskite crystals was significantly improved by the synergic effects of varying the precursor solution composition and covering the surface with a pH-neutral conjugated polyelectrolyte, poly[2,6-(4,4-bis (potassium butanylsulfonate)-4H-cyclopenta [2,1-b; 3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (CPE-K), which possesses potassium ions as counter ions. The influence of the energy-level alignment at the interface on V-oc was also discussed. Our findings highlight that improved perovskite crystallization at the interface can facilitate bulk growth of perovskite grains in the vertical direction and effectively suppress nonradiative surface charge recombination, thus enhancing the short-circuit current and V-oc.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE