Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep Convolutional Neural Networks Based Analysis of Cephalometric Radiographs for Differential Diagnosis of Orthognathic Surgery Indications

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Ki-Sun-
dc.contributor.authorRyu, Jae-Jun-
dc.contributor.authorJang, Hyon-Seok-
dc.contributor.authorLee, Dong-Yul-
dc.contributor.authorJung, Seok-Ki-
dc.date.accessioned2021-08-31T08:47:45Z-
dc.date.available2021-08-31T08:47:45Z-
dc.date.created2021-06-19-
dc.date.issued2020-03-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/57473-
dc.description.abstractThe aim of this study was to evaluate the deep convolutional neural networks (DCNNs) based on analysis of cephalometric radiographs for the differential diagnosis of the indications of orthognathic surgery. Among the DCNNs, Modified-Alexnet, MobileNet, and Resnet50 were used, and the accuracy of the models was evaluated by performing 4-fold cross validation. Additionally, gradient-weighted class activation mapping (Grad-CAM) was used to perform visualized interpretation to determine which region affected the DCNNs' class classification. The prediction accuracy of the models was 96.4% for Modified-Alexnet, 95.4% for MobileNet, and 95.6% for Resnet50. According to the Grad-CAM analysis, the most influential regions for the DCNNs' class classification were the maxillary and mandibular teeth, mandible, and mandibular symphysis. This study suggests that DCNNs-based analysis of cephalometric radiograph images can be successfully applied for differential diagnosis of the indications of orthognathic surgery.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherMDPI-
dc.subjectX-RAY IMAGES-
dc.subjectLANDMARK DETECTION-
dc.subjectMODEL-
dc.titleDeep Convolutional Neural Networks Based Analysis of Cephalometric Radiographs for Differential Diagnosis of Orthognathic Surgery Indications-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Ki-Sun-
dc.contributor.affiliatedAuthorRyu, Jae-Jun-
dc.contributor.affiliatedAuthorJang, Hyon-Seok-
dc.contributor.affiliatedAuthorJung, Seok-Ki-
dc.identifier.doi10.3390/app10062124-
dc.identifier.scopusid2-s2.0-85082715937-
dc.identifier.wosid000529252800225-
dc.identifier.bibliographicCitationAPPLIED SCIENCES-BASEL, v.10, no.6-
dc.relation.isPartOfAPPLIED SCIENCES-BASEL-
dc.citation.titleAPPLIED SCIENCES-BASEL-
dc.citation.volume10-
dc.citation.number6-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusX-RAY IMAGES-
dc.subject.keywordPlusLANDMARK DETECTION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthorconvolutional neural networks-
dc.subject.keywordAuthorcephalometric radiographs-
dc.subject.keywordAuthororthognathic surgery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ryu, Jae Jun photo

Ryu, Jae Jun
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE